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Abstract

In 2025, there is still no ubiquitous, accurate, infrastructure-free indoor positioning system.
Among existing approaches, WiFi-based positioning is highly promising as it leverages
existing infrastructure. However, its performance is severely affected by WiFi signal
variability and environmental dynamics. Thus, this paper presents a novel approach
that combines WiFi Round Trip Time and Received Signal Strength measurements with
the Conformal Prediction (CP) framework to achieve robust uncertainty-aware indoor
positioning. Our proposed method does not only accurately estimate the user position,
but also provides two prediction regions: a rectangular region and a circular region. We
systematically evaluate our method across three real-world testbeds, which achieves a
positioning accuracy of 0.6 m, while generating prediction regions with theoretical coverage
guarantees for circular regions and marginal coverage guarantees for rectangular regions.
To the best of our knowledge, this is one of the first work to enable uncertainty quantification
on top of state-of-the-art WiFi ranging signals.
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1. Introduction

Accurate indoor positioning is a key enabler for modern smart environments, rang-
ing from asset tracking, patient monitoring to emergency responses. However, Global
Positioning System (GPS) has severe limitations in indoor environments because of signal
attenuation, multipath propagation, and building penetration losses. In the literature,
WiFi-based indoor positioning has emerged as a popular solution, leveraging ubiquitous
WiFi infrastructure in commercial and residential buildings [1-4].

Traditional approaches primarily rely on WiFi Received Signal Strength (RSS) fin-
gerprinting [5-9], which estimates location by matching real-time measurements to a
pre-constructed radio map. Despite its popularity, RSS-based positioning suffers from sig-
nificant variability caused by environmental dynamics, device heterogeneity, and temporal
signal fluctuations, often resulting in positioning errors of several meters.

The IEEE 802.11mc standard [10] introduced WiFi Round-Trip Time (RTT) through a
Fine Timing Measurement (FITM) protocol, enabling direct range measurements between
mobile devices and access points with sub-meter accuracy potential. Unlike RSS-based ap-
proaches that rely on signal strength variations, RTT provides explicit distance information,
making it particularly robust and sensitive to environmental dynamics. The integration
of machine learning and deep learning techniques with RTT measurements has further
enhanced positioning accuracy, with recent studies demonstrating meter-level or even
sub-meter-level performance in complex indoor environments [11,12]. However, despite
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achieving impressive point estimation accuracy, these models fail to quantify prediction
uncertainty or provide confidence bounds.

To address these challenges, this paper provides a rigorous and comprehensive ex-
amination of conformal prediction techniques for WiFi RTT-based indoor positioning,
with comparative analysis of RSS integration strategies. Conformal prediction offers a
distribution-free framework capable of producing statistically valid prediction intervals
with guaranteed coverage [13-16]. In contrast to traditional probabilistic approaches that
rely on restrictive modelling assumptions (e.g., Gaussianity or known noise character-
istics) conformal prediction requires only exchangeability, making it particularly well
suited to indoor positioning contexts where wireless signal behaviours are highly variable,
environment-dependent, and often non-Gaussian.

Despite its theoretical appeal, the application of conformal prediction to WiFi RTT
localisation introduces several practical and methodological challenges that remain insuffi-
ciently explored in the literature [2,17]. These challenges motivate the need for a systematic
investigation into how conformal prediction can be adapted, calibrated, and evaluated
within real-world WiFi RTT-based indoor positioning pipelines, especially when fusing
RTT with RSS measurements.

In summary, this paper makes the following contributions:

¢ This paper offers a comprehensive analysis of conformal prediction techniques for
WiFi-based indoor positioning utilising WiFi RTT signal measures, highlighting their
ability to deliver robust uncertainty quantification and thereby improve the reliability
of the indoor positioning system.

*  We evaluate the inductive conformal predictor, and assess its effectiveness and influ-
ence on WiFi RTT-based indoor positioning systems, validating reliable uncertainty
estimates for both RTT and RSS inputs, with particularly notable benefits for high-
precision RTT signals.

e Wesystematically examine the integration of RTT and RSS signal measurements within
conformal prediction frameworks, providing a thorough comparison of RTT-only, RSS-
only, and fused RTT+RSS approaches.

*  We conduct extensive experimental validation across multiple real-world challeng-
ing indoor testbeds with diverse environmental characteristics, from office room,
apartment, to university building floor.

¢ To the best of our knowledge, this is the first work to introduce and empirically assess
rectangular and circular prediction regions for 2D indoor positioning. Our results
reveal how the geometry of prediction regions affects coverage guarantees and provide
practical guidance for uncertainty-aware indoor positioning systems.

The remainder of this paper is structured as follows. Section 2 reviews related work;
Section 3 presents the problem formulation and system architecture; Section 4 describes
the WiFi RTT protocol and the conformal prediction framework; Section 5 details the
experimental setup; and Section 6 concludes the paper.

2. Related Work

WiFi-based indoor positioning systems have demonstrated significant progress,
with traditional RSS-based methods achieving metre-level accuracy through fingerprinting
techniques [1,2,18]. WiFi RTT represents a more advanced WiFi signal measure that can
achieve sub-meter level accuracy due to its reliance on more stable time-of-flight measure-
ments [11,19-21]. This makes WiFi RTT more sensitive to environmental variations and
less susceptible to multipath effects compared to RSS [12,22-25]. Consequently, WiFi RTT
is widely used in hybrid WiFi-based indoor positioning and line-of-sight (LOS) /non-line-
of-sight (NLOS) identifications [26-30]. However, despite these technological advances,
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a critical gap remains in current WiFi indoor positioning implementations: the lack of
robust uncertainty quantification mechanisms that can provide confidence measures and
reliability indicators for location estimates.

Recent research has begun addressing uncertainty quantification in WiFi-based posi-
tioning through diverse frameworks. A Conformal Prediction (CP)-based indoor position-
ing system was proposed in [31] that outperforms traditional methods like Naive Bayes
and W-KNN by up to 20% in accuracy while providing statistically valid confidence mea-
sures. This method was later extended with Kullback-Leibler divergence to achieve 16-25%
error reduction. The measurement uncertainty from wireless anchors was utilised in [32]
with an observability-based filter and potential-based path planning to minimize localiza-
tion uncertainty. The study in [33] proposed the integration of uncertainty quantification
methodologies into deep learning models for RSS-based indoor localisation to enhance sys-
tem dependability and performance. An interval random analysis approach was proposed
in [34] for uncertain WiFi-based indoor localisation that enhances accuracy by employing
an interval random parameter lognormal shadowing model for radio map enhancement.
The authors in [35] applied conformal prediction to WiFi RSSI-based indoor positioning,
achieving statistically guaranteed coverage where prediction sets contain the true location
with pre-specified probability. Researchers proposed DumbLoc in [36], a machine learning
framework using WiFi RSS fingerprinting that achieved 94.15% floor prediction accuracy
and an 8.45 m mean positioning error on the UJI dataset while demonstrating cross-dataset
generalisability. A CP method was proposed in [37] for fingerprint-based indoor locali-
sation using WiFi Channel State Information (CSI) and Bluetooth Low Energy (BLE) RSS
signals, achieving rigorous statistical guarantees with minimal extra training cost.

Despite these developments, CP implementation in WiFi indoor positioning systems
remains relatively rare, and critically, none of the existing research has investigated CP
applications to WiFi RTT-based positioning systems. This represents a substantial gap
given RTT’s superior baseline accuracy, where CP could potentially provide even more
reliable confidence regions while maintaining statistical guarantees for the predictions.

3. Problem Statement and System Architecture

This section begins by introducing the problem formulation for the proposed reliable
WiFi RTT-based indoor positioning system. It then provides an overview of the system
architecture underlying the proposed approach.

3.1. Problem Formulation

To estimate the unknown position of a user device, the WiFi-based indoor positioning
system makes use of the preprocessed WiFi RTT and RSS measurements collected from
multiple Access Points (APs) at known, fixed locations. It then utilises a machine learning
model to estimate the user’s location based on newly reported WiFi signal measures.

Consider a network of N access points with known, fixed positions. For each AP i,
two types of WiFi signal measurements are available:

RTT; : Round-Trip Time measurement from AP i; 1)

RSS; : Received Signal Strength measurement from AP i. )
The complete measurement vector is defined as:
z = [RTTy,RSS;, RTT,, RSSy, ..., RTTy, RSSy 7. (3)

Alternatively, the measurements can be partitioned into RTT and RSS components:
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zgrr = [RTTy, RTT,, ..., RTTy]Y; 4)
zrss = [RSS1,RSSy, ..., RSSy]T. (5)

To accurately estimate the user’s location u, a supervised machine learning model is
employed to directly map measurements to position estimates:

a= hg(Z), (6)

where 1 is the estimated position from the positioning model, g is the leveraged machine
learning with learnable parameters 6, z is the complete measurement vector containing
both RTT and RSS data.

The model parameters 6 are learned by minimising a loss function over a dataset of m
labeled training samples:

0" = arg mein]; L(uj, ho(z;)), @

where a typical choice for £ is the root mean squared error (RMSE) defined below

Clut) = u—afo=1/(x— 22+ (- 92 ®)

where (x, y) is the ground truth location u of the user and (£, 77) is the positioning estimation
U generated by the machine learning model.

This data-driven approach enables the model to learn complex relationships between
signal measurements and spatial positions while naturally accommodating the nonlinear
characteristics of indoor signal propagation.

3.2. System Architecture

To deliver reliable WiFi-based indoor positioning estimates, the proposed framework
adopts a comprehensive machine learning approach that integrates conformal prediction
with WiFi fingerprinting, as show in Figure 1.
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Figure 1. Overview of reliable WiFi-based Indoor Positioning Framework.

Data preprocessing: The system begins with data collection from multiple WiFi access
points (APs) distributed throughout the indoor environment. By meticulously collecting
the WiFi RTT and RSS signal measures at each location in the testbed, a WiFi fingerprint
dataset is constructed. After preprocessing, including outlier removal and missing-value
imputation, the collected dataset is split into training set and calibration set. These datasets
are then fed into the machine learning model in the next stage.
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Model training: At the core of the architecture lies the machine learning model, which
learns to map WiFi fingerprint patterns to real-world geographic coordinates. During the
training phase, the model processes the training set to identify complex patterns and
correlations between WiFi signal characteristics and spatial locations. Next, the trained
machine learning model is used to generate the positioning estimation for the calibration set.
The residuals from these predictions, calculated as the differences between the predicted
and ground truth locations in the calibration set, will then be used within the conformal
prediction framework to provide reliable positioning estimation.

Positioning estimation generation: To ensure reliability, the architecture incorporates
a conformal prediction module that quantifies the uncertainty of the estimated position.
When WiFi RTT and RSS measurements are reported from an unknown user location,
the machine learning model first generates a positioning estimate of the location. The con-
formal predictor then analyses the calibration residuals from the previous stage to construct
prediction intervals at a user-specified confidence level. The final output is a reliability-
aware positioning estimation, containing both the predicted location and its associated
uncertainty bounds.

4. Reliable WiFi-Based Indoor Positioning Framework

This section provides a comprehensive description of the WiFi RTT protocol, WiFi RTT
fingerprinting, and the conformal predictor employed in the proposed framework.

4.1. WiFi RTT and Fingerprinting

WiFi RTT represents a more advanced approach for indoor positioning that can
achieve sub-meter level accuracy. Unlike RSS-based methods, RTT leverages the Fine Time
Measurement (FTM) protocol to provide direct distance measurements by calculating the
time-of-flight of WiFi signals traveling at the speed of light.

As shown in Figure 2, the initiation of RTT protocol is the transmission of a FTM
request from the initiator (smartphone) to the responder (WiFi AP), specifying message
count and intervals. Upon reception, the WiFi AP transmits a series of FTM messages,
awaiting acknowledgment. The responder meticulously timestamps each FIM dispatch
(t1) and acknowledgment receipt (t4), subsequently calibrating these timestamps using its
internal clock. Simultaneously, the initiator acknowledges each FTM message, recording
reception time (t;) and acknowledgment transmission (¢3). Exchange of these temporal
details allows both parties to calculate the round trip time, propagation time, and therefore
the distance DgrT between the smartphone and WiFi AP is defined as

Dgry = (ty —t1) ; (t3 —t) e, )

where c is the speed of light.

While the RTT protocol provides a direct measure of the distance to the AP, it can
be further complemented by fingerprint-based positioning. Although fingerprinting was
originally developed using WiFi RSS measurements [4,38-42], recent studies have demon-
strated that it can be seamlessly extended to incorporate RTT measurements as well [26].
In a typical WiFi fingerprinting workflow, two phases are involved: an offline phase and
an online phase. During the offline phase, a comprehensive fingerprint dataset is con-
structed by collecting WiFi RTT and RSS signal measures, together with the corresponding
ground-truth coordinates of reference locations.

After that, preprocessing methods are applied to the raw WiFi signal measures. To en-
sure the completeness of the fingerprinting dataset, more than 140 samples were collected at
each reference point, although only 120 samples per location were required for the dataset
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utilised in the paper. After removing low-quality data samples that contain missing values,
the WiFi data samples are labeled with the ground-truth coordinates of the reference points
where they were collected. Next, to indicate WiFi measurements from APs that are too far
away or not visible at current reference point, an RSS value of —200 dBm and an RTT value
of 100,000 mm are assigned (see Section 5.1). After appropriate preprocessing, this dataset
is used to train a machine learning Random Forest model. For all Random Forest models
leveraged in this study, several model parameters were chosen from predefined ranges, in-
cluding the number of estimators, maximum tree depth, etc. Multimodal models employed
moderately deep trees with fewer estimators, whereas unimodal models favoured a larger
ensemble with shallower trees to balance bias and variance.

In the online phase, when a user enters the testbed at an unknown location, a new WiFi
data sample is captured and compared against the stored fingerprints in the dataset. Finally,
the trained machine learning model produces an estimate of the user’s current location.

&l

t1 FTM] ~Sa
\ t2
Ack 13

“ /

v v
Figure 2. An overview of RTT protocol.

4.2. Uncertainty Quantification via Conformal Prediction

Although machine learning models can estimate user locations using pre-constructed
WiFi fingerprinting datasets, they often lack reliable measures of the positioning estima-
tion uncertainty. To address this, conformal prediction is employed, offering a rigorous,
distribution-free framework for generating positioning estimation regions with statisti-
cal guarantees.

To reliably quantify uncertainty in WiFi-based indoor positioning, our goal is to
construct prediction regions C that contain the true user position with a specified probability
(see Algorithm 1), denoted as:

P(unew S C(Znew)) >1-—e¢, (10)

where upew is the ground truth coordinates of the user’s current location, C(znew) is
the predicted region under user-specified confidence level, znew is the newly reported
WiFi signal measures collected by the user, € is the desired miscoverage rate, 1 — € is the
confidence level representing the probability that the prediction region contains the true
user position.

To generate the predicted region, the WiFi fingerprint dataset is first split into training
set and calibration set. Next the machine learning-based positioning model kg is trained the
training set obtain optimal parameters 8*. After training, the machine learning model hg+ is
applied to the calibration set. For each calibration example, the Euclidean distance between
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the true position and the model’s prediction is calculated, serving as the nonconformity
score, defined as:
1 = ||ui—h9*(zi)||2, i=m+1,...,m+n. (11)

where 1; is the residual (i.e., nonconformity score ;) of the i th sample in the calibration
set, u; and z; are the ground truth location and WiFi signal measurements of the sample,
respectively, m is the total number of training samples and 7 is the total number of cali-
bration samples. The nonconformity score will be used to quantify how unusual a true
location is given the measurements and the model’s prediction.

Algorithm 1 Robust Indoor Positioning with Hybrid WiFi RTT-RSS Signals.

1: Input:
D = {(z;,w;) }!*1": WiFi fingerprint dataset
z; = [RTT{,RSSy, ..., RTTy, RSSy]”: WiFi measurements from N APs
u; = (x;,y;): ground truth coordinates
m: number of training samples
n: number of calibration samples
€ € (0,1): miscoverage rate
Znew: New WiFi measurement
2: Output:
Unew = (fnew, Jnew): point estimate
Crect, Ceire: prediction regions with P(upew € C) > 1—¢€

¢ Dirain < {(zi, W)}y
0" < argming )i [[u; — ho(z))|l2
: Deal + {(zi,w;) ?1:—;[”+1
fori=m+1tom+ndo

a; = (£, ;) < ho(z;)

Tyi < |xi — &
10: 1y lyi — Bl
1 1y /(= %)%+ (yi — 9i)?
12: end for
13: gy < Quantile; ({rxm+1,-- -, Txmen})
14: qy < Quantile;_.({rym+1,-- -, Tym+n})
15: qp < Quantile; _¢({rpmi1,-- -, Tpmin})
16: Gnew = (£,7) < hg* (Znew)
17: Crect < { (X)) : X' =2 < qx, [y — 9| < 9y}
18: Ceire ¢ {(x",y) : [[(x,¥') — newll2 < gp}
19:
20: return Gnew, Crect, Ceirc

O X N Gk @

Once the residuals of the calibration set is calculated, the (1 — €)-quantile g of the
calibration residuals is identified, defined as:

g = Quantile; _.({rm+1, .-+, "mtn})- (12)

Thus, for any newly reported WiFi signal measurement znew, the prediction region is
generated as:

C(znew) = {‘_1 €R®: [|a — hg(Znew) 12 < ‘7}/ (13)

where C(znew) is centered at the model’s point estimate, with radius ¢, @ is the candidate
location forming the predicted region. For the independent prediction of the x-coordinate,
the quantity g, represents the half-width of the prediction interval [£ — gy, £ + gx].
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5. Empirical Results

This section provides a thorough evaluation of the proposed reliable WiFi-based
indoor positioning system. We begin by introducing the real-world datasets used in our
study, followed by a detailed investigation of the empirical experimental results.

5.1. Experimental Setup and Data Collection

To evaluate the performance of the proposed reliable WiFi-based indoor positioning
system, examine the robustness across devices and time and demonstrate the generalisation
of the results, we conducted experiments in three representative and challenging real-world
environments: a full floor of a campus building, an office room, and a residential apartment
(see Figure 3) [26]. This dataset includes WiFi RTT and RSS measurements, along with
line-of-sight (LoS) annotations for every reference point. These three datasets were collected
over different time period in real-world complex scenarios that contain distinguishing LoS
conditions. Each reference point comprises more than 120 WiFi scans, as shown in Table 1.
A desktop PC equipped with an Intel Core i9-12900K processor (Intel Corporation, Santa
Clara, CA, USA) and 32 GB DDR4 4000 MHz memory (G.SKILL International Enterprise
Co., Ltd., Taipei, Taiwan) was used to analyse the results. On the largest building floor
dataset, the model training time was 1.6 s, and the average generation time for each g-value
was 0.2 s. These low computational requirements indicate that the proposed approach is
lightweight and amenable to practical deployment.

. 92 m ,
J | — i U i r 1T 1r 1l 1ds 1T 1w  — 1 1r 1r il 1T r aly 1r 1T l) e
Lot L LRI o ]
i AP 3 ﬁmw SRS e W L ; M - iﬁ I
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‘ AP 8 P1  E— e =] T j
([ H_ ‘AP4 U e gl‘ L AP 13 3
AP 1 Mihr ! —_AFS ] — 1o LLLL| = apd °
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(a) Building floor testbed.
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| q 3 3
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| . 1
(b) Office room testbed. (c) Apartment testbed.

Figure 3. Layout of the 3 testbeds. The blue dots show the locations of the RTT-enabled APs.
The placement of the APs replicates their real-world locations. All measurements are taken in the
grey areas.
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Table 1. The details of the utilised datasets.

Dataset Features Building Floor Office Room Apartment
Area 92 x 15 m? 5.5 x 4.5 m? 7.7 x 9.4 m?
Grid size 0.6 x 0.6 m? 0.455 x 0.455 m? 0.48 x 0.48 m?
Reference points 642 37 110
Samples per RP 120 120 120
Data samples 77,040 4440 13,200
Training samples 57,960 3240 9720
Testing samples 19,080 1200 3480
Signal measure WiFi RTT, WiFi RSS WiFi RTT, WiFi RSS WiFi RTT, WiFi RSS
Other information LoS condition of every AP LoS condition of every AP LoS condition of every AP
Collection time 3 days 1 day 1 day
A complex real-world scenario . .
Notes with b(r))th LoS and NLoS A LoS scenario Contains an AP with NLoS paths

e for most of the RPs
conditions

In the Building Floor dataset, 13 RTT-enabled Google WiFi points (Google LLC, Moun-
tain View, CA, USA) (see Table 2) were deployed to mirror their real-world positions
within the building. WiFi data were collected using an LG G8X ThinQ smartphone (LG
Electronics Inc., Seoul, Republic of Korea) (see Table 3). Please note that no human sub-
jects were involved in the data collection. The smartphone was mounted on a tripod
during all measurements at human chest height, and therefore no ethics approval or in-
formed consent was required. Other WiFi RTT-enabled access points include the Google
Nest WiFi Pro (Google LLC, Mountain View, CA, USA), Cisco 9164 (Cisco Systems, Inc.,
San Jose, CA, USA) and Aruba AP755 (HPE Aruba Networking, Santa Clara, CA, USA),
among others. WiFi RTT-enabled smartphones include the Google Pixel 9, Samsung SM-
5918B (Samsung Galaxy 523 Ultra) (Samsung Electronics Co., Ltd., Suwon, Republic of
Korea) and Xiaomi Mi 10 Pro (Xiaomi Corporation, Beijing, China). A full list is available at
https:/ /developer.android.com/develop/connectivity /wifi/ wifi-rtt#supported-aps (ac-
cessed on 29 December 2025).

Table 2. Device Specifications of Google WiFi Point.

Specification Details
Bluetooth Bluetooth Low Energy

Each point can handle up to 100 connected devices. Supports multiple simultaneous 4K
Performance

video streams.

Table 3. Device Specifications of LG G8X ThinQ.

Specification Details

oS Android 9.0 (Pie)

SoC Qualcomm Snapdragon 855 (SM8150) (Qualcomm Technologies, Inc., San Diego, CA, USA)

CPU Octa-core, Qualcomm SDM855 Snapdragon 855 (7 nm) (Qualcomm Technologies, Inc., San
Diego, CA, USA)

GPU Qualcomm Adreno 640, 585 MHz (Qualcomm Technologies, Inc., San Diego, CA, USA)

RAM 6 GB, 2133 MHz

Storage 128 GB

Camera 4032 x 3024 pixels, 3840 x 2160 pixels, 30 fps

WiFi WiFi 802.11 a/b/g/n/ac, Dual band, WiFi Hotspot, WiFi Direct, DLNA

USB 2.0, USB Type-C

Bluetooth 5.0

Positioning GPS, A-GPS, GLONASS, Galileo

Security WPA3 encryption, Automatic security updates, Trusted Platform Module (TPM)

WiFi Standard AC1200 MU-MIMO WiFi (Qualcomm Technologies, Inc., San Diego, CA, USA).
Simultaneous dual-band (2.4 GHz/5 GHz) supporting IEEE 802.11a/b/g/n/ac.

Processor Quad-core ARM

Memory 512 MB RAM, 4 GB eMMC flash storage

Ports Dual Gigabit Ethernet ports

Power 15 W power adaptor
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Table 4 provides a snapshot of the dataset. Columns "AP1 RSS’ to "AP13 RSS’ contain
the received signal strength from each AP, with —200 dBm denoting that the AP is not
detected at the reference point. Columns X and Y give the ground-truth coordinates, and the
LoS APs column specifies which APs have direct LoS. Table 4b illustrates the corresponding
RTT data, where a value of 100,000 mm indicates the RTT measurement from unheard APs.
For performance assessment, we ensured no overlap between training and testing locations.

Table 4. A Snapshot of the proposed WiFi dataset. The value —200 dBm in (a) and 100,000 mm in (b)
indicate that the WiFi signals from the AP are not heard from the current reference point.

(a) WiFi RSS data samples

X Y AP1RSS (dBm) AP2RSS (dBm) AP13 RSS (dBm) LoS APs
1 15 —200 —200 . -73 12

1 16 —200 —200 ... -70 12

2 0 —200 —200 ... 71 None

2 1 —200 —200 . —63 12

125 15 —74 —47 ... —200 23

(b) WiFi RTT data samples

X Y AP1RTIT (mm) AP2RTT (mm) AP13RTT (mm) LoS APs
1 15 100,000 100,000 ... 5958 12

1 16 100,000 100,000 ... 4893 12

2 0 100,000 100,000 . 8716 None

2 1 100,000 100,000 ... 10,062 12

125 15 10,585 598 . 100,000 23

5.2. Baseline Performance of WiFi-Based Indoor Positioning

To evaluate the performance of the proposed reliable WiFi-based indoor positioning
system, we employ a Random Forest (RF) model as the primary predictor, as it has been
identified in the literature [26] as one of the most effective approaches for this task. Asil-
lustrated in Figure 4 and Table 5, the hybrid WiFi RTT and RSS-based indoor positioning
system delivers the most promising positioning estimation, with an accuracy of 0.6 m for
the challenging large-scale real-world Building Floor dataset. The positioning accuracy
achieves 0.59 m and 0.38 m for Apartment and Office Room dataset, respectively. It is
observed that, even in the complex building-floor dataset containing mixed line-of-sight
(LOS) and non-line-of-sight (NLOS) conditions, the hybrid system that combines WiFi RTT
and RSS measurements achieves a positioning accuracy below 1 m, 80% of the time.

Table 5. Positioning performance (in metres) of WiFi-based indoor positioning systems using dif-
ferent WiFi signal measurements. It is observed that WiFi RTT-RSS fingerprinting delivers the best
positioning estimation.

Testbed RTT + RSS RTT RSS
Building floor 0.60 0.70 1.38
Apartment 0.59 0.59 1.27
Office room 0.38 0.40 0.63

https://doi.org/10.3390/s26010284
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Figure 4. CDF curves of WiFi-based indoor positioning using different WiFi signal measurement on
different testbeds. It is observed from the CDF curves that WiFi RTT-RSS fingerprinting delivers the
best positioning estimation.

5.3. Conformal Prediction for WiFi-Based Indoor Positioning

Traditional machine learning models, including the Random Forest predictor em-
ployed above, provide location estimations without confidence measures, making it diffi-
cult to assess the reliability of individual predictions or to identify when the system may be
operating under challenging conditions. To address this gap, we apply CP on the three com-
plicated real-world datasets to generate prediction intervals and regions with guaranteed
coverage rates, providing quantifiable uncertainty estimates for location predictions.

Three distinct g-values for different aspects of location prediction are produced.
The first g, is the half-width of the x-coordinate prediction interval and ensures that the true
x-coordinate falls within [£ — g, £ + gx] with probability 1 — €. Similarly, g, guarantees that
the true y-coordinate falls within [ — gy, § + q] with the same coverage level. The third
value g, is designed for direct 2D positioning and generates a circular prediction region.

These three g-values produce two fundamentally different types of 2D prediction
regions. The first type, derived from g, and g, creates a rectangular region defined as

Crect = {(x/,y/) | x' e (£ —qx, 2+ QX]IVI €ly— 9y, J + ‘71/]}' (14)

The second type, derived from g, produces a circular region defined as

Cere = {6, ') | /(' = 92+ (v = 9)? < gp}. (15)
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This dual approach allows us to examine how different geometric representations of
uncertainty perform in practice. The choice of circular and rectangular prediction regions
is motivated by the conformal prediction framework: circular regions arise naturally
from the Euclidean distance nonconformity measure r; = ||u; — ||, whilst rectangular
regions result from independent marginal predictions for x and y coordinates, aligning with
Cartesian building layouts. Both geometries support efficient real-time implementation and
provide the necessary comparison to reveal the fundamental trade-off between coverage
reliability and region size.

To evaluate the performance of conformal prediction within the indoor positioning
framework, we assess two key aspects: Coverage Rate and Efficiency.

¢  Coverage Rate
Coverage rate measures the empirical proportion of test instances in which their true
values lie within the predicted intervals or regions. For a target confidence level of
1 — ¢, CP guarantees that the coverage rate

==

k
Y 1{true value; € prediction region C;}
i=1

is at least 1 — € under the assumption of exchangeability with k being the number of

test samples, where 1 is an indicator function that takes the value of 1 if true value; €

prediction region C;. In our experiments, four coverage metrics are reported:

1. g« Coverage: proportion of test instances where the true x-coordinate lies within
[£ — gx, £ + gx], where gy represents the half-width of the prediction interval.

2. gy Coverage: proportion of test instances where the true y-coordinate lies within
[7 — qy, § + qy], where g, represents the half-width of the prediction interval.

3. 2D Coverage: proportion of test instances lying inside the rectangular region

Crect = {(x,y) | ¥ € 8 —qx, 2 +qx], ¥ € [ — gy, 9+ aqy]}-

4. gp Coverage: proportion of test instances lying within the circular region

Caire = {(x,y) | /(& =92+ (v — 9)? < ).

e  Efficiency
Efficiency quantifies the tightness or size of the prediction regions. Under identical
coverage rates, smaller regions indicate more efficient predictions, meaning that the
CP model provides more precise and confident estimates while still satisfying the
required coverage guarantee.

As shown in Tables 6 and 7, across all three testbeds and all signal types, the proposed
methods successfully achieve the target coverage rates for individual coordinates and
circular regions (7, Coverage). The g, Coverage, g, Coverage, and g, Coverage metrics
consistently meet or slightly exceed their target levels (90% or 95%), confirming that CP’s
validity guarantee holds in practice for this application domain. As shown in Figure 5,
the conformal prediction approach generates tight uncertainty regions (pink circles and
green rectangles) around the true positions (blue dots), providing reliable coverage guaran-
tees for indoor localisation.

However, while the circular regions (g, Coverage) successfully meets the target cov-
erage rate, a systematic pattern emerges when examining the rectangular regions (2D
coverage rates). These consistently fall below the target coverage levels, typically achieving
80-86% coverage when targeting 90%, and 90-94% coverage when targeting 95%. This
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phenomenon occurs because the rectangular region requires both x and y coordinates to
simultaneously fall within their respective intervals. This occurs because the 2D rectangular
region requires both x and y to fall within their respective intervals simultaneously, so the
joint coverage becomes the product of the two marginal coverages. This finding highlights
an important consideration when choosing between rectangular and circular prediction
regions for 2D positioning applications.

Table 6. The prediction intervals and coverage rates for reliable WiFi-based indoor positioning
systems across different testbeds. ‘Confidence’ is the user specified confidence level for conformal
prediction. "qy” and 'g,” are the prediction g-values for the £ coordinate and j coordinate, respec-
tively. It is observed that predicting £ and  coordinates separately successfully meets the expected
coverage rate.

(a) Building Floor

WiFi signal measures  Confidence qx (m) qx Coverage g, (m) qy Coverage
RTT and RSS hybrid 90% 0.79 89.99% 0.98 90.22%
RTT and RSS hybrid 95% 1.03 95.23% 1.16 95.19%
RTT Only 90% 0.95 90.14% 1.15 89.92%
RTT Only 95% 1.13 94.85% 1.57 94.87%
RSS Only 90% 2.83 90.09% 1.51 90.09%
RSS Only 95% 3.65 95.22% 221 95.34%
(b) Apartment
WiFi signal measures  Confidence qx (m) qx Coverage g, (m) qy Coverage
RTT and RSS hybrid 90% 0.98 89.43% 0.72 89.43%
RTT and RSS hybrid 95% 1.47 94.94% 0.86 95.06%
RTT Only 90% 1.06 90.75% 0.73 89.43%
RTT Only 95% 1.38 95.92% 0.99 95.80%
RSS Only 90% 2.79 91.38% 1.75 90.11%
RSS Only 95% 2.99 96.15% 1.97 94.83%
(c) Office Room
WiFi signal measures  Confidence qx (m) qx Coverage g, (m) qy Coverage
RTT and RSS hybrid 90% 0.50 89.44% 0.68 93.33%
RTT and RSS hybrid 95% 0.82 94.26% 0.82 95.93%
RTT Only 90% 0.66 90.19% 0.77 90.37%
RTT Only 95% 0.67 97.59% 0.81 96.11%
RSS Only 90% 1.01 90.37% 1.77 90.00%
RSS Only 95% 1.15 95.00% 1.88 95.00%

The comparison across different WiFi signal types reveals a clear performance hier-
archy that remains consistent across all three testbeds. The RTT + RSS hybrid approach
demonstrates the best efficiency, producing the smallest g-value and thus the tightest pre-
diction regions. For example, in the Building Floor testbed at 90% confidence, the hybrid
approach achieves g, = 0.79 m. The RTT Only approach performs at a moderate level, pro-
ducing regions 4-50% larger depending on the testbed. The RSS Only approach consistently
produces the largest g-values, indicating substantially more uncertainty, with predictions
100-200% larger than the hybrid approach. This clear ordering demonstrates that combin-
ing RTT measurements with RSS provides complementary information that significantly
improves both accuracy and certainty in position predictions.

The three testbeds exhibit distinct characteristics that reflect their physical environ-
ments. The smallest Office Room testbed consistently shows the tightest prediction regions
across most methods, with the RTT+RSS hybrid approach at 90% confidence achieving
gp = 0.90 m and 0.96 m at 95%. The Apartment testbed demonstrates comparable perfor-
mance, with g, = 1.11 m at 90% and 1.52 m at 95% for the hybrid approach. The Building
Floor testbed shows moderately larger prediction regions, with the hybrid approach achiev-
ing g, = 1.20 m at 90% and 1.45 m at 95%. Considering that the Building Floor dataset is
a complex, large-scale testbed containing both LOS and NLOS conditions, these results
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remain promising, as the predictor is still able to provide reasonably tight uncertainty
bounds despite the challenging signal propagation environment.

Table 7. The prediction regions and coverage rates for reliable WiFi-based indoor positioning
systems across different testbeds. ‘Confidence’ is the user specified confidence level for conformal
prediction. ‘g’ is the prediction g-value for the overall positioning (£, 7). 2D coverage is the coverage
rate calculated from the rectangular prediction region of Creet = {(x', ) | ¥’ € [ — gx, £+ qx],
v € [§—qy, 7+ qy]}. "gp Coverage’ is the coverage rate calculated from the circular prediction
region Ceire = {(x, ') | v/ (x’ —2)2+ (v — §)? < qp}. It is observed that while circular regions
provide coverage rates closer to the specified confidence levels, rectangular regions often yield smaller

areas but with significantly lower 2D coverage rates, suggesting a trade-off between efficiency and
coverage rage.

(a) Building Floor
WiFi signal measures  Confidence 2D Coverage qp (m) gp Coverage
RTT and RSS hybrid 90% 81.75% 1.20 90.01%
RTT and RSS hybrid 95% 90.68% 1.45 95.39%
RTT Only 90% 82.75% 1.37 89.79%
RTT Only 95% 90.89% 1.84 94.96%
RSS Only 90% 81.48% 3.16 90.16%
RSS Only 95% 90.90% 3.97 95.29%
(b) Apartment
WiFi signal measures  Confidence 2D Coverage gp (m) gp Coverage
RTT and RSS hybrid 90% 80.52% 1.11 90.52%
RTT and RSS hybrid 95% 90.17% 1.52 95.52%
RTT Only 90% 82.59% 1.29 89.94%
RTT Only 95% 91.90% 1.79 96.26%
RSS Only 90% 85.63% 3.27 90.52%
RSS Only 95% 92.36% 3.68 94.77%
(c) Office Room
WiFi signal measures Confidence 2D Coverage qp (m) gp Coverage
RTT and RSS hybrid 90% 84.07% 0.90 90.56%
RTT and RSS hybrid 95% 90.56% 0.96 96.30%
RTT Only 90% 80.56% 0.86 89.26%
RTT Only 95% 93.70% 0.89 95.93%
RSS Only 90% 80.37% 1.88 93.15%
RSS Only 95% 90.00% 1.97 99.44%

Finally, the relationship between confidence level and prediction region size reveals the
fundamental trade-off in uncertainty quantification, as shown in Figure 6 and Table 8. When
increasing confidence from 90% to 95%, rectangular prediction regions grow substantially:
for the hybrid approach, areas expand from 3.10 m? to 4.78 m? (Building Floor), 2.82 m? to
5.06 m? (Apartment), and 1.36 m? to 2.69 m? (Office Room), with similar growth patterns
observed for circular regions and other signal types. More critically, a consistent trade-off
emerges between region size and coverage reliability across all conditions. Rectangular
regions consistently achieve smaller areas than circular regions. For example, at 90% confi-
dence in the Building Floor testbed, the hybrid approach yields 3.10 m? (rectangular) versus
4.52 m? (circular). This efficiency advantage, representing 30-45% reduction in area, persists
across different signal measures and testbeds. However, this spatial efficiency comes at the
cost of coverage reliability. It is observed that rectangular regions systematically achieve
2D coverage rates 8-10 percentage points below target levels (e.g., 81.75% actual versus
90% nominal), while circular regions consistently meet or slightly exceed their specified
confidence levels (e.g., 90.01% for 90% target). This pattern holds across all three testbeds
and signal types, though the area differential is most pronounced for RSS Only measure-
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ments. This trade-off between spatial efficiency and coverage guarantee reflects an inherent
characteristic of uncertainty quantification frameworks and should be carefully considered
when selecting confidence levels and region geometries for practical deployment.
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Figure 5. WiFi-based indoor positioning results using conformal prediction with 90% confidence level
in building floor testbed. Blue points indicate ground truth locations, red circles represent prediction
regions Creet = { (¥, ') | ¥’ € [J? qx,32+qx] y' € [9 qy, ¥+ qy]} and the green rectangles represent
prediction regions Ceire = {(x/, ') | /(' — £)2+ (¥ — 9)? < g,} with guaranteed coverage rate.
The area of the circular region (a) and the rectangular region (b) are 4.52 m? and 3.10 m?, respectively.
However, the actual coverage rates are 90.01% and 81.75%, respectively. These results indicate the
trade-off between efficiency (prediction region area) and coverage rage in uncertainty quantification.
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Figure 6. Circular prediction region radius (a) and area (b) as a function of the user-specified
confidence level in different testbeds. Hybrid WiFi RTT and RSS measurements are selected as
the input signal measures. It is observed from the curves that higher confidence levels always
require larger prediction regions. (a) Circular prediction region radius as a function of the user-
specified confidence level. (b) Circular prediction region area as a function of the user-specified
confidence level.
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Table 8. Comparison of prediction region areas and coverage rates for WiFi-based indoor positioning
systems. The rectangular prediction region is defined as Creet = {(x,¥') | ' € [# — gx, 2 + qx],
]/ € [g- qy, 7+ q4]} with area 4 X gy X gy. The circular prediction region is defined as

/\

Ceire = {(x,¥) | V/(x' = %)%+ (¥ — 9)? < qp} with area 7t x qz It is observed that under identical
signal measures and confidence levels, smaller prediction regions with maintained coverage indicate
higher efficiency and reliability. The analysis reveals that while circular regions provide coverage
rates closer to the specified confidence levels, rectangular regions often yield smaller areas but with
significantly lower 2D coverage rates, suggesting a trade-off between efficiency and coverage rage.

(a) Building Floor

WiFi signal measures  Confidence Rectangular Area (m?>) 2D Coverage Circular Area (m?) qp Coverage
RTT and RSS hybrid 3.10 81.75% 4.52 90.01%
RTT and RSS hybrid 4.78 90.68% 6.60 95.39%

(b) Apartment
WiFi signal measures  Confidence Rectangular Area (m?) 2D Coverage Circular Area (m?) g, Coverage
RTT and RSS hybrid 2.82 80.52% 3.87 90.52%
RTT and RSS hybrid 5.06 90.17% 7.26 95.52%

(c) Office Room
WiFi signal measures  Confidence Rectangular Area (m?) 2D Coverage Circular Area (m?) g, Coverage
RTT and RSS hybrid 1.36 84.07% 2.54 90.56%
RTT and RSS hybrid 2.69 90.56% 2.90 96.30%

6. Conclusions

This paper introduces a robust WiFi-based indoor positioning framework that com-
bines RTT and RSS measurements with conformal prediction to deliver accurate location
estimates alongside statistically valid uncertainty quantification. Motivated by the need for
reliable indoor positioning in real-world applications, the proposed method leverages both
RTT and RSS signal types to overcome the limitations of traditional point estimate systems
and provides meaningful confidence measures without strong modeling assumptions.

Experimental results across three diverse real-world testbeds show that the hybrid
RTT-RSS approach consistently outperforms single-signal methods, achieving a position-
ing accuracy of 0.6 m in challenging building floor environments. Conformal prediction
yields efficient, circular prediction regions that maintain desired coverage rates (90-95%)
while being significantly smaller than those produced by RSS-only systems. The frame-
work proves robust across varied settings, though some limitations remain, such as larger
prediction regions in high-variability scenarios and the need for improved handling of
dynamic environments.

Future research will focus on adaptive conformalisation, handling temporal changes,
and integrating additional sensor modalities to further enhance accuracy and efficiency.
In conclusion, this work demonstrates that the proposed framework delivers both reliable
accuracy and uncertainty quantification, making it well-suited for deployment in real-world
challenging indoor scenarios where trustworthy location information is essential.
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