
royalsocietypublishing.org/journal/rsta

Research

Article submitted to journal

Subject Areas:

machine learning, transportation

engineering, predictive modeling,

applied statistics

Keywords:

train delay prediction, uncertainty

quantification, conformal prediction

Author for correspondence:

Rui Luo

e-mail: ruiluo@cityu.edu.hk

Uncertainty Quantification in
Train Delay Prediction with
Conformal Prediction
Rui Luo1∗, Xiaoyi Su1∗ and Khuong An

Nguyen2

1Department of Systems Engineering, City University

of Hong Kong, Hong Kong SAR, China
2Computer Science Department, Royal Holloway

University of London, Surrey, United Kingdom

∗ Rui Luo and Xiaoyi Su are joint first authors on this

paper.

Predicting train delays is crucial for railway operations
and passenger experience, but point predictions fail
to capture uncertainty, limiting their use in risk-
aware decisions. Existing uncertainty quantification
(UQ) methods often rely on unverifiable assumptions
and produce miscalibrated intervals. This paper
evaluates conformal prediction (CP) as a distribution-
free framework for generating prediction intervals
with rigorous coverage guarantees. Using a large-
scale dataset from Southeastern Railway in the UK, we
show that UQ methods such as quantile regression,
Monte Carlo Dropout, and Deep Ensembles frequently
under- or over-cover nominal levels. In contrast,
CP corrects miscalibration across models, ensuring
valid marginal coverage. Conformalized quantile
regression (CQR) achieves the best efficiency by
producing adaptively sized intervals while maintaining
calibration. To address heterogeneity across stations,
we apply Mondrian conformal prediction (MCP),
which enforces conditional coverage within strata.
Empirical results confirm MCP delivers reliable
intervals for each subgroup. Our work demonstrates
that CP is a model-agnostic, robust framework
for trustworthy uncertainty quantification, offering
a practical pathway to reliable risk assessment in
transportation and other high-stakes domains.

1. Introduction
The punctuality of public transit is a cornerstone
of urban efficiency and passenger satisfaction. For
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railway networks as the backbone of transportation systems, adherence to meticulously planned
schedules is paramount for operational integrity and service quality [1,2]. Deviations from
these schedules, manifesting as delays, can cascade through the network, disrupting passenger
journeys, eroding public trust, and even incurring significant economic costs for operators [3,4].
The accurate prediction of train delays is therefore not merely a matter of convenience but a
critical function for dynamic resource allocation, proactive incident management, and transparent
passenger communication. However, the inherent stochasticity of railway operations which is
driven by various factors such as adverse weather, infrastructure faults, and fluctuating passenger
loads, renders delay prediction a formidable and complex scientific challenge [5–7].

While numerous studies have developed models for predicting train arrival times, often
yielding a single point estimate (e.g., [8–10]), such deterministic forecasts are fundamentally
misaligned with the stochastic nature of delays. A single value, however accurate on average,
fails to convey the range of plausible outcomes and the associated risks. For both passengers and
operators, decision-making is often more informed by an understanding of this uncertainty. A
passenger might alter their travel plans if there is a high probability of a significant delay, while
an operator might preemptively re-route services based on a predicted interval of disruption.
Consequently, the field is progressively moving beyond point prediction towards uncertainty
quantification (UQ), which aims to provide a prediction interval, a range of likely delay times
that is of far greater practical value for risk-aware decision-making [11,12].

Existing approaches to UQ in transportation science, however, often suffer from a critical
limitation: they lack formal, distribution-free guarantees on their performance. Methods ranging
from quantile regression (QR) to Bayesian deep learning produce intervals whose validity
is contingent upon unverifiable assumptions about the data distribution or model structure.
Consequently, their empirical coverage can silently deviate from the nominal level, rendering
them untrustworthy for high-stakes operational decisions. This highlights a foundational gap
between current UQ practices and the need for truly reliable risk assessment tools.

This paper systematically introduces and evaluates the conformal prediction (CP) framework
as a robust, general-purpose, and distribution-free solution to this challenge [13–16]. Unlike
conventional UQ techniques, CP provides rigorous, non-asymptotic guarantees on prediction
interval coverage, regardless of the underlying data distribution or the complexity of the
predictive model. It operates as a wrapper that transforms the outputs of other machine learning
models into theoretically sound prediction intervals. This study highlights the power of CP as
a framework that offers two principal capabilities. First, it can augment any point prediction
model, from classic regression to advanced deep neural networks (DNNs) or gradient boosting
machines, to produce reliable interval predictions. Second, it can perform post-hoc calibration on
the outputs of existing interval prediction methods, such as conformalized quantile regression
(CQR) [17], correcting their biases and enforcing the desired coverage rate. Furthermore, we
address a limitation of standard CP that its coverage guarantee is marginal (i.e., averaged over all
data points) leveraging Mondrian conformal prediction (MCP) [13]. This extension enables us to
enforce valid coverage conditionally, ensuring that the prediction intervals maintain their stated
reliability across predefined strata of the data, such as different railway stations, routes, or times
of day. By demonstrating these capabilities on a comprehensive dataset of train operations from
Southeastern Railway in the UK, our research provides a pathway for transport system operators
to develop a truly trustworthy risk assessment tool.

The remainder of this paper is organized as follows. Section 2 reviews prior research on train
delay prediction and the evolution of UQ techniques. Section 3 provides a detailed description
of the Southeastern Railway dataset and our feature engineering process for the delay prediction
task. In Section 4, we first formally define the prediction problem, then introduce the underlying
point and interval prediction models that form the basis of our study, and finally provide a
detailed exposition of the conformal prediction framework and its key variants. The experimental
design and comparative results are presented in Section 5, followed by a discussion of their
implications and directions for future work in Section 6. Finally, Section 7 concludes the paper.



3

royalsocietypublishing.org/journal/rsta
P

hil.
Trans.

R
.S

oc.
A

0000000
..........................................................................

2. Related Work
The challenge of predicting train delays is intrinsically linked to the broader scientific pursuit
of modeling complex, dynamic systems. The evolution of methodologies in this domain
reflects a clear trajectory: a progressive journey from deterministic point forecasting towards a
more nuanced, probabilistic understanding of operational uncertainty. This section traces this
evolution, charting the path from foundational statistical models to the frontiers of trustworthy
uncertainty quantification, situating the contribution of this paper within its scientific context.

(a) The Pursuit of Accuracy: From Statistical Models to Deep Learning
Initial forays into travel time and delay prediction established the viability of data-driven
approaches, supplanting purely theoretical or simulation-based models. This first wave of
research predominantly employed classical machine learning and statistical techniques. For
instance, support vector regression (SVR) was shown to be effective for general traffic time
prediction [18], while various forms of artificial neural networks (ANNs) were adapted for the
specific task of railway delay forecasting [19]. Comparative studies from this period sought to
identify the optimal algorithm for short-term predictions, with findings often highlighting the
superior performance of shallow ANNs and their variants, such as the nonlinear autoregressive
model with external inputs (NARX), over traditional linear regression or instance-based methods
like k-nearest neighbours (k-NN) [20,21]. Even k-NN, when enhanced, demonstrated competitive
performance for bus arrival time [12] and train delay prediction [22]. More recently, ensemble
methods, especially gradient boosting algorithms like XGBoost [23] and LightGBM [24], have
become standard tools for train delay prediction, offering high accuracy and robustness on
structured transit data [8,25–27].

While these foundational models demonstrated that delays were, to a significant extent,
predictable, they often reached a performance plateau. Their capacity was limited in capturing
the intricate, non-linear, and long-range dependencies inherent in large-scale railway networks.
The advent of deep learning marked a paradigm shift, offering a powerful toolkit to model the
complex spatiotemporal dynamics that govern network-wide delay propagation. Researchers
began to construct sophisticated architectures capable of learning from the confluence of causal
text information [28], open data sources [27], network topology, temporal patterns, and exogenous
factors. For example, deep learning models have been integrated with interaction networks to
explicitly model how delays cascade between connected services [10], and have been designed to
leverage rich spatiotemporal features for improved accuracy [11,29]. Innovations such as modular
deep neural networks tailored to specific operational clusters [9], fully connected architectures for
arrival time estimation [30], and even neural time point processes to model the stochastic timing
of events [31], have collectively pushed the boundaries of predictive accuracy. A comprehensive
review by Tiong et al. [32] reinforces this trajectory, emphasizing the increasing importance of
multi-source data fusion and dynamic, multi-station prediction models as the field matures.

(b) The Paradigm Shift: From Point Predictions to Quantifying Uncertainty
The relentless pursuit of higher accuracy in point predictions, while valuable, obscures a
fundamental limitation: a single-value forecast is an incomplete representation of a stochastic
future. For operational decision-making under risk, knowing the most likely delay is less useful
than knowing the range of plausible delays. This recognition has catalyzed a paradigm shift
in transportation science, moving the focus from mere prediction to the more challenging task
of uncertainty quantification. The need for robust prediction intervals, even when dealing with
multi-source or complex datasets, has become increasingly apparent [33].

Early and important work in this area centred on constructing prediction intervals around
the outputs of neural networks. Methodologies such as the delta and Bayesian techniques
were among the first to be rigorously explored for quantifying uncertainty in travel time
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predictions, providing a probabilistic envelope around the deterministic output [34,35]. This
line of inquiry has since diversified, with modern approaches leveraging more sophisticated
probabilistic machine learning [36]. Bayesian deep learning, for example through encoder-
decoder architectures, has been used to capture model uncertainty [37,38], while econometric
models like the generalized autoregressive conditional heteroskedasticity (GARCH) model have
been employed to account for the time-varying volatility in delay patterns [39].

However, a critical weakness pervades many of these UQ techniques: their reliability
is contingent upon strong, and often unverifiable, assumptions about the data-generating
distribution or the correctness of the model specification. Bayesian methods, for instance, require
a correctly specified prior and likelihood, and their posterior distributions are only as valid as
these assumptions. An incorrect assumption can lead to prediction intervals that are silently
miscalibrated, systematically over- or under-confident, rendering them untrustworthy for the
high-stakes decisions common in railway operations.

It is in response to this fundamental need for trustworthy, assumption-free uncertainty
estimates that conformal prediction has emerged as a powerful alternative [13–15]. Various
univariate conformal regression methods have been reviewed and comparatively analyzed,
providing a solid foundation for the field [40]. As a distribution-free framework, CP transforms
the outputs of any point prediction algorithm into prediction intervals with finite-sample,
marginal coverage guarantees, without making any assumptions about the underlying data
distribution beyond exchangeability [16]. Recognizing that the intervals produced by standard
CP can be inefficiently wide, recent research has focused on refining the methodology. This
includes developing conformal prediction specifically for models like random forests [41] and
exploring methods for multi-output regression, both exact and approximate, along with unified
comparative studies of new conformity scores [42,43]. Additionally, techniques for approximating
score-based explanation within conformal regression have been developed [44]. Conformalized
quantile regression, for example, elegantly combines the efficiency of quantile regression with
the rigorous guarantees of CP to produce narrower, more informative intervals [17]. Further
advancements, such as the QUANTRAFFIC framework, demonstrate how post-hoc calibration
techniques can be applied to enhance the uncertainty outputs of sophisticated deep learning
models in traffic forecasting [45]. This study builds directly upon this lineage, systematically
applying and extending the CP framework to provide a truly reliable risk assessment tool for
railway operations, addressing the critical need for trustworthy UQ that prior methodologies
have struggled to meet.

3. Data and Feature Engineering

(a) Data Description
This study utilizes a comprehensive dataset of train operations from the Southeastern Railway
network in the United Kingdom, spanning the period from March 2022 to October 2023. The
raw dataset comprises 4,280,181 records, documenting 271,928 unique journey instances across
7,486 distinct service lines (Headcode) and 173 stations (Tiploc). Each record corresponds to a train’s
scheduled and actual performance at a specific station, with consecutive records detailing a train’s
movement between adjacent stations. The dataset contains 15 primary variables, including:

— Headcode: A nationally standardized alphanumeric identifier for a specific train service.
— UnitNumber: An identifier for the specific trainset (engine) assigned to the service.
— Tiploc: A unique national identifier for a specific station.
— BookedDeparture and ActualDeparture: The scheduled and actual departure times.
— BookedArrival and ActualArrival: The scheduled and actual arrival times.
— DwellBooked and DwellActual: The scheduled and actual time a train spends stationary at

a station.
— UntilNextLocationBookedTime and UntilNextLocationActualTime: The scheduled and actual

travel times to the subsequent station.
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— A set of difference variables (DepartureDiff, ArrivalDiff, etc.), calculated as the actual time
minus the booked time.

All time-related measurements in the dataset are recorded in seconds. To characterize the dataset,
we first analyzed its network structure and delay patterns. A directed graph representing the
entire network topology was constructed, where nodes are stations and edges represent direct
train movements (Figure 1). The distribution of arrival delays across all services reveals a long-
tailed pattern, characteristic of complex transportation systems where small delays are common
but large disruptions, though infrequent, are significant (Figure 2).

Figure 1. The topological structure of the Southeastern Railway network derived from the dataset. Nodes represent

stations (Tiploc), and directed edges represent observed train movements between them. Node size reflects degree

centrality, while color indicates betweenness centrality (scale on the right). The station LNDNBDE (London Bridge),

highlighted in yellow, stands out as a critical hub with high both degree and betweenness centrality, serving as a key

connector in the network.

Figure 2. Histogram of arrival delays (ArrivalDiff ) for all station stops in the dataset. The distribution is right-skewed,

indicating that while most trains arrive close to their scheduled time, a lot of services experience substantial delays.
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For this study, we adopted a systematic approach to construct a representative cross-sectional
dataset. We identified the five busiest stations based on their total traffic frequency (count of
stops). These stations are LNDNBDE (London Bridge), CHRX (London Charing Cross), WLOE
(London Waterloo), TONBDG (Tonbridge), and SVNOAKS (Sevenoaks). We then extracted all
journey segments that terminate at one of these five key stations. A journey segment is defined as
the portion of a train’s journey from any upstream station to one of these five terminal stations.
This process yielded a rich dataset of 4,310,125 unique segments, each serving as a sample for our
prediction task.

(b) Feature Engineering
To develop a robust predictive model, we engineered a comprehensive set of features for each
journey segment. These features are designed to capture the multi-faceted dynamics of train
operations by transforming raw data into meaningful numerical representations.

The primary objective is to predict the final arrival delay of a train at a target station, given its
state at a current, upstream station. The target variable, ArrivalDiff, is the difference between the
train’s actual arrival time and its booked arrival time. The engineered features were systematically
constructed and can be grouped into the following categories:

Dynamic and Temporal Features. This group of features quantifies the journey’s real-time
state and its temporal context. To capture cyclical patterns, we encoded the scheduled departure
time into time-of-day categories (e.g., morning, afternoon), day of the week, month, and a
weekend flag. The train’s immediate performance is described by its arrival delay, departure
delay, and dwell time deviation at the current station. To model delay propagation, we also
engineered features summarizing the journey’s history, including the current stop number, trip
completion percentage, the mean and maximum arrival delays experienced so far, the mean dwell
time deviation, and the short-term delay trend between the last two stops.

Structural and Inherent Features. Complementing the dynamic attributes, this set of features
encodes the static characteristics of the journey’s route, network topology, and the trainset
itself. High-cardinality identifiers were not used directly but were transformed to extract
their underlying information. The journey segment from the current to the target station is
characterized by the number of intermediate stops and its total scheduled travel and dwell times.
The current station’s role in the network was quantified by its in-degree and out-degree from
the network graph (Figure 1). Similarly, the service route (Headcode) was represented by the total
number of stations on its path and the aggregated degrees of these stations. Finally, the trainset
(UnitNumber) was characterized by extracting its three-character prefix (often denoting train class)
and calculating its operational frequency across the dataset as a proxy for its usage pattern.

Finally, all engineered features were transformed into a purely numerical format. One-hot
encoding was applied to categorical features with a manageable number of classes: the target
station, the time-of-day category, and the extracted UnitNumber prefix. To preserve the cyclical
nature of temporal features, the day of the week and month were transformed using sine and
cosine functions. Specifically, for a cyclic feature x with period T , the transformation is defined
as:

sin_encoded(x) = sin
(
2π · x

T

)
, cos_encoded(x) = cos

(
2π · x

T

)
. (3.1)

For the day of the week, x∈ {1, 2, . . . , 7} and T = 7; for the month, x∈ {1, 2, . . . , 12} and T = 12.
This comprehensive feature engineering and encoding process, summarized in Table 1, resulted
in a final feature matrix of size 4,310,125 × 34, ready for model training and evaluation.

4. Methodology
This section details the methodological framework for generating train delay predictions with
rigorous uncertainty guarantees. We first formally define the prediction tasks, then introduce the
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Table 1. Summary of engineered features for train delay prediction.

Category Feature Name Description
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dynamic &
Temporal

Time of Day One-hot encoded departure time categories (e.g., Morning).
Day/Month Cyclic encoding (sin/cos) of day of week and month.
Weekend Flag Binary indicator for weekend services.
Current Delays Arrival and departure delays at the current station (s).
Dwell Deviation Difference between actual and booked dwell time (s).
Trip Progress Percentage of journey completed; Current stop number.
Delay History Mean/Max arrival delays and mean dwell deviation so far.
Delay Trend Change in delay between the last two stops.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Structural &
Inherent

Segment Info Number of intermediate stops; Scheduled travel/dwell times.
Station Centrality In-degree and Out-degree of the current station.
Route Complexity Total stops on the route; Aggregated route degree.
Train Unit Extracted unit class prefix (One-hot); Usage frequency.
Target Station One-hot encoded identifier of the destination station.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

underlying prediction models, and finally present the conformal prediction framework, including
its extensions for enhanced efficiency and conditional validity.

(a) Problem Formulation
Let the data consist of N samples {(xi, yi)}Ni=1 drawn from an unknown distribution, where x∈
R34 is the feature vector that encapsulates the dynamic, temporal, and structural characteristics
detailed in Section 3 and y ∈R is the target arrival delay. Our objective is framed through three
progressively sophisticated tasks.

Point Prediction. This task is to learn a mapping function f :R34 →R that generates a point
estimate ŷ= f(x) for the true delay y. The objective is to train a model that approximates the
best mapping by minimizing a given loss function (e.g., mean squared error), such that for a new,
unseen feature vector x, the prediction ŷ is as close as possible to the true outcome y.

Interval Prediction. For risk-aware decision-making, this task is to construct a prediction
interval, C(x), that contains the true delay y with a high, user-specified probability. Formally,
given a desired nominal coverage level 1− α, where α∈ (0, 1) is the tolerable miscoverage rate,
the primary goal is to construct a function C(·) that generates intervals satisfying the marginal
coverage guarantee, i.e., for a new sample pair (x, y),

P (y ∈C(x))≥ 1− α. (4.1)

A secondary objective is efficiency, which seeks to minimize the interval length E[|C(x)|] while
maintaining the validity guarantee.

Conditional Coverage. To ensure reliability across specific operational contexts, we aim for
a stronger guarantee. Let A :R34 →K be an attribute function that maps a feature vector x to a
specific category k within a finite set of strata K (e.g., a specific target station or time period). The
goal is to ensure the intervals satisfy conditional validity for each stratum k ∈K:

P (y ∈C(x) |A(x) = k)≥ 1− α. (4.2)

By achieving this stronger guarantee, the prediction intervals are trustworthy across different
operational contexts defined by A.

(b) Underlying Prediction Models
This study evaluates a spectrum of models, ranging from simple baselines to sophisticated deep
learning architectures. Both the point prediction and interval prediction models provide the
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underlying forecasts that can be subsequently wrapped by the conformal prediction framework
to generate statistically guaranteed prediction intervals.

(i) Point Prediction Models

The following models are employed to generate single-value forecasts of train arrival delays.
Naive Forecast (Naive). It assumes that the delay observed at the current point in a journey

will carry forward to the final destination. The prediction for the final arrival delay is therefore
set equal to the train’s departure delay from its current station.

LASSO [46]. We employ LASSO as a linear baseline. Its ℓ1-norm penalty performs automated
feature selection, yielding a sparse and interpretable linear model useful for benchmarking
against non-linear approaches.

Gradient Boosting Machines. We employ three state-of-the-art gradient boosting frameworks:
XGBoost [23], LightGBM [24], and CatBoost [47], which construct strong predictive models by
sequentially adding weak learners (decision trees) to correct predecessor errors.

Deep Neural Network (DNN) [48]. A feed-forward neural network is used to capture
complex, non-linear interactions. The architecture consists of fully connected layers with ReLU
activation, trained via backpropagation to minimize the mean squared error.

(ii) Baseline Interval Prediction Models

Our study considers the following six interval prediction models. These models are trained to
directly output a prediction interval C(x) = [ŷlow, ŷhigh]. They represent common approaches to
uncertainty quantification in the machine learning literature.

Empirical Prediction Interval (EPI). This method provides a non-conditional prediction
interval based on the empirical distribution of historical delays. The interval is constructed by
computing the empirical α/2 and 1− α/2 quantiles of all arrival delays in the training dataset.
The resulting interval is identical for all predictions.

Quantile Regression (QR) [49]. Unlike standard regression which models the conditional
mean, QR models the conditional quantiles of the target variable. To construct a 1− α prediction
interval, two separate models are trained to estimate the conditional α/2 and 1− α/2 quantiles,
denoted q̂α/2(x) and q̂1−α/2(x). Each model is trained by minimizing the pinball loss function,

Lτ (y, q̂τ ) = (y − q̂τ )τ · I(y > q̂τ ) + (q̂τ − y)(1− τ) · I(y≤ q̂τ ), (4.3)

for the corresponding quantile level τ .
Quantile Random Forest (QRF) [50,51]. A non-parametric and robust method that extends

the random forest algorithm to estimate conditional quantiles. For a new input x, each tree in
the forest provides a prediction. Instead of averaging these predictions, QRF retains the full set
of training labels (yi) present in the terminal leaves where x lands. The conditional quantiles are
then estimated from the empirical distribution of this collection of values.

Quantile Deep Neural Network (QuantDNN). Built upon the idea in [45], QuantDNN is
constructed by attaching linear layers to the last layer of the DNN architecture as quantile
functions for the lower and upper quantiles of the prediction interval. These quantile functions
are trained using pinball loss.

Monte Carlo Dropout (Dropout) [52]. It is a technique to approximate Bayesian inference in
deep neural networks and estimate model uncertainty. A standard DNN with dropout layers is
trained as usual. However, at inference time, dropout is kept active. The same input x is passed
through the network multiple times (M stochastic forward passes), yielding a distribution of
predictions {ŷ(t)}Mm=1. The prediction interval is then formed by taking the empirical α/2 and
1− α/2 quantiles of this output distribution.

Deep Ensembles (DE) [53]. This method quantifies uncertainty by training an ensemble of
K identical neural networks, each initialized with different random weights and trained on
shuffled versions of the same data. For a new input x, each model k predicts the parameters of a
Gaussian distribution, (µk, σ

2
k), where σ2

k captures the aleatoric uncertainty. The final predictive
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distribution is a Gaussian mixture p(y|x) = 1
K

∑K
k=1 N (y|µk, σ

2
k). To construct the prediction

interval, this mixture is often approximated by a single Gaussian distribution. The total predictive
variance σ2

pred is calculated as the sum of the average aleatoric uncertainty ( 1
K

∑
σ2
k) and the

epistemic uncertainty ( 1
K

∑
(µk − µ̄)2, where µ̄ is the mean of µk).

(c) The Conformal Prediction Framework
Unlike methods that rely on distributional or model-specific assumptions, CP’s guarantees hold
under the sole, mild assumption of exchangeability—that the data points {(xi, yi)}ni=1 are drawn
from a joint distribution that is invariant to permutation. This makes it an ideal tool for high-
stakes applications like railway operations, where the cost of untrustworthy uncertainty estimates
is high. The core idea of CP is to quantify the "strangeness" of a new data point relative to a set
of calibration data using a nonconformity score. By calibrating these scores, we can construct an
interval that is guaranteed to contain the true outcome with a user-specified probability 1− α. In
this study, we leverage three key variants of the CP framework.

(i) Split Conformal Prediction

Split conformal prediction (SCP), also known as inductive conformal prediction, is the most
common and computationally efficient implementation of the CP framework [15]. The procedure
begins by partitioning the available training data into two disjoint sets: a proper training set
Dtrain and a calibration set Dcal. Let the calibration set be of size n, i.e., Dcal = {(xi, yi)}ni=1. An
arbitrary black-box predictor f̂ is trained exclusively on Dtrain. This trained model is then applied
to the calibration set to compute nonconformity scores, which measure the discrepancy between
predictions and true outcomes. For regression tasks, a standard choice is the absolute residual:

si = |yi − f̂(xi)|. (4.4)

The collection of these scores {si}ni=1 empirically represents the distribution of model errors on
unseen data. To achieve the target coverage 1− α, we then determine a calibration term q̂ by
calculating the ⌈(1− α)(n+ 1)⌉/(n+ 1) empirical quantile of {si}ni=1. This adjustment ensures
finite-sample marginal coverage validity [16].

Given a new test point xn+1, the prediction interval is constructed symmetrically around the
point prediction f̂(xn+1):

C(xn+1) = [f̂(xn+1)− q̂, f̂(xn+1) + q̂]. (4.5)

By construction, this interval is guaranteed to satisfy the marginal coverage property:

P (yn+1 ∈C(xn+1))≥ 1− α. (4.6)

A key characteristic of SCP is that the resulting interval width, 2q̂, is constant across all test points,
reflecting an implicit homoscedasticity assumption on the prediction errors.

(ii) Conformalized Quantile Regression

To address the limitation of fixed-width intervals and improve efficiency, conformalized quantile
regression (CQR) [17] produces intervals whose widths are adaptive to the local difficulty of
the prediction, as captured by the input features x. It elegantly combines the predictive power
of quantile regression with the rigorous guarantees of the conformal framework. The process
mirrors that of SCP, beginning with a train/calibration split. On the proper training set Dtrain,
two quantile regression models, q̂low(x) and q̂high(x), are trained to estimate the conditional α/2
and 1− α/2 quantiles, respectively. This yields an initial, uncalibrated interval [q̂low(x), q̂high(x)].
Calibration is then performed on Dcal by computing a nonconformity score for each sample,
defined as the signed distance of the true value yi from the nearest boundary of its predicted
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interval:
si =max(q̂low(xi)− yi, yi − q̂high(xi)). (4.7)

A score si ≤ 0 indicates that the true value is contained within the initial interval, whereas si > 0

quantifies the magnitude of the miscoverage. As before, the ⌈(1− α)(n+ 1)⌉/(n+ 1) empirical
quantile q̂ of these scores is calculated.

For a new test point xn+1, the prediction interval is formed by uniformly expanding the initial
quantile interval by this calibration term q̂:

C(xn+1) = [q̂low(xn+1)− q̂, q̂high(xn+1) + q̂]. (4.8)

CQR thus retains the adaptivity of quantile regression while enforcing the same formal coverage
guarantee as SCP, leading to more efficient and informative intervals.

(iii) Mondrian Conformal Prediction

The guarantee provided by standard CP is marginal (Equation 4.1), meaning it holds on average
over the entire data distribution. For operational use, however, it is often critical to ensure
reliability across specific subgroups. For instance, prediction intervals should be equally valid
for trains arriving at a major hub like LNDNBDE as for those at a relatively smaller station like
SVNOAKS. Mondrian conformal prediction provides a direct path to achieving this stronger
conditional coverage guarantee (Equation 4.2) [13]. The MCP framework achieves this by
stratifying the data and applying the conformal procedure independently within each stratum.

A partitioning function A(x) is defined to map each data point to a specific category k. The
calibration set Dcal is then partitioned into disjoint subsets {Dcal,k} according to these strata.
The calibration process, whether using the point or interval error, is then performed separately
for each stratum. This results in a unique, stratum-specific quantile, q̂k, calculated only from the
nonconformity scores within that group. When a new test point xn+1 is presented, its stratum
kn+1 =A(xn+1) is identified, and the prediction interval is constructed using the corresponding
quantile q̂kn+1

. For instance, using the SCP approach, the interval would be:

C(xn+1) = [f̂(xn+1)− q̂kn+1
, f̂(xn+1) + q̂kn+1

]. (4.9)

By enforcing the coverage guarantee within each defined stratum, MCP ensures that the
prediction intervals are trustworthy not just on average, but also conditionally for predefined
operational contexts, which provides a more robust and reliable risk assessment tool.

5. Experiments and Results
To empirically validate the theoretical properties of the discussed uncertainty quantification
methods, we conduct a comprehensive set of experiments on the Southeastern Railway dataset
with five busiest target stations. The primary objectives of this experimental evaluation are
threefold: first, to establish a performance baseline by comparing a range of conventional point
prediction models; second, to assess the quality of prediction intervals generated by various
native UQ techniques, including Bayesian-inspired neural networks and quantile regression
methods; and third, to systematically demonstrate the effectiveness and versatility of the CP
framework in enhancing the reliability of predictions from both point and interval predictors.

(a) Experimental Setup
To obtain robust and statistically significant results, we employ a repeated random splitting
procedure across 10 independent runs. In each run, the dataset is partitioned into four distinct,
non-overlapping sets: a training set (50% of the data) for model fitting; a validation set (10%) for
hyperparameter tuning and early stopping; a dedicated calibration set (20%) used exclusively by
the conformal prediction algorithms; and a final test set (20%) for performance evaluation.
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A unified hyperparameter optimization (HPO) strategy is adopted for all trainable models
using the Optuna framework with a tree-structured Parzen estimator (TPE) sampler. To ensure
fairness and computational efficiency, HPO is performed once for each model architecture. This
is done on a 10% subset of the training and validation data from the first experimental split,
with a budget of 50 trials. The resulting optimal hyperparameters are then saved and consistently
applied to that model across all 10 experimental runs.

The CP framework is systematically applied as a post-processing calibration step. Standard
point prediction models are calibrated using SCP, while the baseline interval predictors are
adjusted using the interval calibration technique of CQR. Furthermore, to investigate conditional
coverage guarantees, we apply the MCP variant. For this, the calibration and prediction sets are
stratified based on the five target stations encoded in the feature set, allowing for the computation
of separate calibration terms for each station group.

(i) Evaluation Metrics

Model performance is evaluated using a comprehensive suite of metrics. Point prediction
accuracy is assessed using the mean absolute error (MAE), root mean squared error (RMSE),
and the coefficient of determination (R2), defined as follows:

MAE =
1

|Itest|
∑

i∈Itest

|yi − ŷi|, (5.1)

RMSE =

√
1

|Itest|
∑

i∈Itest

(yi − ŷi)2, (5.2)

R2 = 1−
∑

i∈Itest
(yi − ŷi)

2∑
i∈Itest

(yi − ȳ)2
, (5.3)

where yi denotes the true value, ŷi the predicted value, ȳ the mean of the true values, and Itest

the index of test set.
Given a coverage level 1− α, let C(xi) = [ŷlow,i, ŷhigh,i] denote the predicted interval for

sample i. The quality of prediction intervals is judged by three key metrics: the coverage rate
(CR), mean width (MW), and the Winkler score (Winkler) [54], defined as follows:

CR =
1

|Itest|
∑

i∈Itest

I
(
ŷlow,i ≤ yi ≤ ŷhigh,i

)
, (5.4)

MW =
1

|Itest|
∑

i∈Itest

(
ŷhigh,i − ŷlow,i

)
, (5.5)

Winkler =
1

|Itest|
∑

i∈Itest

[
(ŷhigh,i − ŷlow,i)

+
2

α

(
(yi − ŷhigh,i)+ + (ŷlow,i − yi)+

)]
. (5.6)

Coverage rate measures the empirical frequency with which the true value falls within
the predicted interval, which should be close to the nominal level 1− α. Mean width
quantifies the average size of the prediction intervals, reflecting the precision of uncertainty
estimates. A lower MW indicates narrower intervals and thus higher precision, but should
be balanced against sufficient coverage. Finally, the Winkler score (also known as the interval
score) provides a combined evaluation of both coverage and width, penalizing both under-
coverage and excessive interval width. A lower Winkler score indicates better overall interval
performance. These interval metrics are calculated for a range of nominal coverage levels: 1−
α∈ {0.75, 0.80, 0.85, 0.90, 0.95, 0.99}. For the Mondrian methods, we also report the conditional
coverage rate for each station-based subgroup to explicitly verify the effectiveness of the
conditional calibration.
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(ii) Implementation Details

Following the HPO process, all point and interval prediction models were configured with
their determined optimal parameters. These specific configurations, which form the basis of our
comparative analysis, are comprehensively detailed in Table 2. For interval prediction, some
models are directly derived from these point predictors. Specifically, Dropout and QuantDNN
are both built upon the optimized DNN architecture, thereby inheriting its structural parameters.
Similarly, the QR model is based on the tuned XGBoost and inherits its parameters. The DE
method is composed of an ensemble of five neural networks, where each network shares an
identical, independently optimized architecture. All neural network models were trained using
the Adam optimizer with a batch size of 1024 and early stopping on validation loss with a patience
of 20 epochs (maximum 200 epochs). Tree-based models applied early stopping with 50 rounds
of patience.

(b) Results
This section presents the empirical results of our comprehensive experiments. We first evaluate
the performance of the point prediction models, then conduct a detailed analysis of the interval
prediction methods, focusing on coverage validity and efficiency, and finally, we assess the
effectiveness of Mondrian conformal prediction in providing conditional coverage guarantees.

(i) Point Prediction Performance

The performance of the six point prediction models is summarized in Table 3. The results
clearly indicate that the gradient boosting models, particularly XGBoost, significantly outperform
the other methods. XGBoost emerges as the superior model across all metrics, achieving the
lowest MAE of 61.7422 seconds and RMSE of 96.8771 seconds, along with the highest R2 of
0.7824. This suggests that XGBoost is highly effective at capturing the complex, non-linear
relationships within the feature set. The other gradient boosting models, CatBoost and LightGBM,
also demonstrate strong predictive power, substantially outperforming the linear LASSO model
and the DNN. The Naive forecast, which simply projects the current delay forward, serves as
a performance baseline and, as expected, yields the highest errors. The robust performance of
XGBoost makes it an excellent candidate for generating the point estimates that support the
standard CP approach.

(ii) Interval Prediction Performance

Moving from point estimates to interval predictions, we first analyze performance at a nominal
coverage level of 1− α= 0.90, as detailed in Table 4. A primary and striking finding is the perfect
calibration achieved by all conformalized methods. Whether applied to point predictors (e.g., C-
XGBoost) or as a post-hoc correction for interval predictors (e.g., C-QR), the conformal framework
ensures that the empirical coverage rates are almost exactly the desired 0.90. In stark contrast,
most baseline interval predictors fail to achieve the nominal coverage. For instance, QR is under-
confident with a coverage of 0.8265, while QRF and DE are over-confident (0.9273 and 0.9352,
respectively). Dropout and QuantDNN exhibit severe under-coverage, rendering their intervals
unreliable. While the simple EPI method achieves the target coverage by design, it does so with
an impractically large mean width (579.5s) and the highest Winkler score among valid methods,
highlighting its inefficiency.

This pattern of miscalibration among baseline methods and the corrective power of CP
is consistent across all studied coverage levels, as illustrated in Figures 3 and 4. Figure 3
demonstrates that applying standard CP to point predictors results in prediction intervals whose
empirical coverage rates align perfectly with the desired nominal levels, tracing the diagonal
line of perfect calibration. Similarly, Figure 4 shows the dramatic effect of conformalization on
baseline interval methods. The dashed lines, representing the uncalibrated models, frequently
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Table 2. Optimal hyperparameters for underlying prediction models.

Model Hyperparameter Search Range Value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LASSO alpha [1e-5, 1e-1] 0.00018
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XGBoost

n_estimators (100, 1000) 944
max_depth (4, 16) 13
learning_rate (0.01, 0.2) 0.0549
subsample (0.6, 1.0) 0.8746
colsample_bytree (0.6, 1.0) 0.7750
reg_alpha (0.0, 10.0) 2.5061
reg_lambda (0.0, 10.0) 9.1311

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LightGBM

n_estimators (100, 1000) 998
max_depth (4, 16) 11
num_leaves (50, 150) 83
learning_rate (0.01, 0.2) 0.1918
feature_fraction (0.6, 1.0) 0.8142
bagging_fraction (0.6, 1.0) 0.9986
bagging_freq (1, 7) 6
reg_alpha (0.0, 10.0) 5.8440
reg_lambda (0.0, 10.0) 9.9892

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CatBoost

iterations (100, 1000) 959
depth (4, 16) 13
learning_rate (0.01, 0.2) 0.1484
l2_leaf_reg (1.0, 10.0) 3.0076
bagging_temperature (0.0, 1.0) 0.0409

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DNN

Hidden Layers [(64,), (128,), (64, 32), (128, 64)] [128, 64]
learning_rate (1e-4, 1e-2) 0.00073
dropout_rate (0.1, 0.5) 0.2165
weight_decay (0.0, 0.01) 0.00612

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dropout Built upon the optimized point-prediction DNN architecture.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QuantDNN Built upon the optimized point-prediction DNN architecture.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QR Based on the tuned XGBoost model and inherits its hyperparameters.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QRF

n_estimators (100, 1000) 685
max_depth (4, 16) 16
min_samples_split (20, 200) 46
min_samples_leaf (10, 100) 17
max_features (0.6, 1.0) 0.9415

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DE (5 NNs)

Hidden Layers [(64,), (128,), (64, 32), (128, 64)] [128, 64]
learning_rate (1e-5, 1e-3) 0.00054
dropout_rate (0.1, 0.5) 0.1053
weight_decay (0.0, 0.01) 6.199e-05

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Performance comparison of point prediction models on the test set. Values are reported as mean ± standard

deviation over 10 runs. MAE and RMSE are in seconds.

Method MAE (s) ↓ RMSE (s) ↓ R2 ↑
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Naive 104.3392 ± 0.1197 167.5438 ± 0.4090 0.3490 ± 0.0021
LASSO 101.3731 ± 0.1128 157.4337 ± 0.4045 0.4252 ± 0.0019
XGBoost 61.7422 ± 0.2315 96.8771 ± 0.3539 0.7824 ± 0.0016
LightGBM 78.0200 ± 0.1852 120.5043 ± 0.5266 0.6633 ± 0.0027
CatBoost 70.2972 ± 0.1442 108.2061 ± 0.3213 0.7285 ± 0.0022
DNN 93.9260 ± 0.9931 149.6675 ± 0.6536 0.4805 ± 0.0044
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 4. Performance comparison of prediction intervals at coverage level of 1− α= 0.90. Values are mean ± standard

deviation over 10 runs. Mean Width is in seconds.

Method CR MW (s) Winkler ↓
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conformalized Point Predictors (C-)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C-Naive 0.9004 ± 0.0007 469.2000 ± 1.0328 797.7541 ± 1.1304
C-LASSO 0.8999 ± 0.0006 433.3018 ± 0.5854 730.6524 ± 1.2292
C-XGBoost 0.9000 ± 0.0005 268.9706 ± 1.1674 450.1775 ± 1.6660
C-LightGBM 0.8999 ± 0.0006 336.8313 ± 0.6628 559.8310 ± 2.0779
C-CatBoost 0.9000 ± 0.0004 304.2067 ± 1.0284 502.9287 ± 1.2048
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Baseline Interval Predictors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EPI 0.9003 ± 0.0003 579.5000 ± 0.5270 900.5474 ± 1.9724
QR 0.8265 ± 0.0020 275.3361 ± 2.4578 415.1835 ± 2.7452
QRF 0.9273 ± 0.0004 399.9141 ± 1.1197 543.4603 ± 1.0234
QuantDNN 0.7284 ± 0.0103 399.4149 ± 4.1427 848.6902 ± 17.7194
Dropout 0.2725 ± 0.0077 68.9254 ± 2.8033 1365.7148 ± 17.1403
DE 0.9352 ± 0.0012 416.6096 ± 3.0212 581.0682 ± 1.1054
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conformalized Interval Predictors (C-)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C-QR 0.8999 ± 0.0004 299.2960 ± 1.9299 407.6149 ± 3.0386
C-QRF 0.9002 ± 0.0005 379.7141 ± 0.7975 541.2892 ± 1.0006
C-QuantDNN 0.9000 ± 0.0002 530.6516 ± 3.6485 756.5759 ± 9.4672
C-Dropout 0.9000 ± 0.0004 389.2066 ± 2.1145 676.4284 ± 7.1303
C-DE 0.9000 ± 0.0002 357.0705 ± 1.3940 568.8646 ± 1.5883
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and significantly deviate from the perfect calibration diagonal, confirming their unreliability.
The solid lines, representing their conformalized counterparts, align almost perfectly with the
diagonal, showcasing the framework’s ability to enforce coverage guarantees regardless of the
underlying model’s initial bias.

While coverage is a prerequisite for trustworthy intervals, their utility is also determined by
their width (efficiency), a trade-off formally captured by the Winkler score. Figure 5 plots the log-
transformed Winkler score for all interval methods across the range of coverage levels. At lower
coverage levels, C-QR, uncalibrated QR, and C-XGBoost achieve the lowest scores. As coverage
increases, their performance diverges: C-QR consistently achieves the lowest Winkler scores, with
uncalibrated QR closely behind, while C-XGBoost gradually falls behind and is surpassed by C-
QRF at 1− α= 0.99. This is particularly noteworthy because the best interval predictor (C-QR) is
not built upon the best point predictor (XGBoost). Although C-XGBoost produces valid intervals,
their width is static, determined by a single calibration term. In contrast, QR implicitly learns the
data’s heteroscedasticity, producing wider intervals for more uncertain predictions and narrower
ones for more certain predictions. CQR leverages this adaptivity, making a small adjustment to
guarantee coverage while largely preserving the efficiency of the adaptive-width intervals. This
makes C-QR more efficient and, therefore, more useful than the fixed-width C-XGBoost intervals.

The benefit of conformalization is further quantified in Table 5, which compares the Winkler
scores of baseline interval models against their conformalized versions. Conformalization
consistently reduces the Winkler score for every method at every coverage level. This
improvement is driven by the correction of miscoverage: for under-confident models like QR,
QuantDNN, and Dropout, the score is reduced by expanding intervals to meet the coverage
target, thereby avoiding large penalties for uncovered points; for over-confident models like
QRF and DE, the score is reduced by slightly shrinking the intervals while still maintaining
the target coverage. A Wilcoxon signed-rank test [55], with Holm-Bonferroni correction [56] for
multiple comparisons, confirms that the reduction in Winkler score achieved by conformalization
is statistically significant for all baseline methods (pcorrected = 0.0293).
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Figure 3. Empirical coverage rates of prediction intervals from SCP applied to various point prediction models, which

validates the theoretical guarantee of CP: all methods achieve coverage rates nearly identical to the target levels.

Figure 4. Effect of post-hoc conformal calibration on coverage rates of baseline interval methods. While baseline methods

are often miscalibrated, conformalization corrects their biases, aligning empirical coverage precisely with target levels.

Figure 5. Comparison of interval prediction performance using the log-transformed Winkler score across all methods and

coverage levels. Each bar shows the mean score for a method at a given level, with error bars indicating standard deviation

over 10 runs. The figure highlights that C-QR is the most efficient, demonstrating the utility of its adaptive intervals.
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Table 5. Comparison of average Winkler score between conformalized (C-) and Baseline interval prediction models

across all studied coverage levels (1− α) over 10 runs. The Winkler score is consistently reduced by conformalization,

and all reductions are statistically significant (Wilcoxon signed-rank test, N = 10, pcorrected = 0.0293).

Model Coverage Level Base (Mean Winkler) C- (Mean Winkler) Reduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QR

0.75 306.0959 304.3624 1.7334
0.80 332.2852 329.6732 2.6120
0.85 365.9900 361.9521 4.0380
0.90 415.1835 407.6149 7.5685
0.95 511.3870 495.8110 15.5760
0.99 805.2701 764.2641 41.0059

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QRF

0.75 391.9429 391.1223 0.8206
0.80 427.9471 426.8203 1.1268
0.85 475.1236 473.5705 1.5531
0.90 543.4603 541.2892 2.1711
0.95 666.3547 663.3557 2.9990
0.99 987.7230 986.1496 1.5734

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QuantDNN

0.75 508.0059 480.0046 28.0013
0.80 578.5441 539.3152 39.2289
0.85 680.4976 623.0272 57.4704
0.90 848.6902 756.5759 92.1143
0.95 1222.1984 1035.4191 186.7793
0.99 2757.8633 2038.4157 719.4476

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dropout

0.75 625.5436 451.6930 173.8506
0.80 755.0034 500.6153 254.3881
0.85 963.7182 568.7107 395.0075
0.90 1365.7148 676.4284 689.2864
0.95 2509.5138 899.1505 1610.3633
0.99 11005.8435 1612.6648 9393.1786

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DE

0.75 411.5701 397.6669 13.9032
0.80 451.4767 436.0844 15.3922
0.85 504.0446 488.5239 15.5207
0.90 581.0682 568.8646 12.2036
0.95 726.8549 724.9134 1.9415
0.99 1239.9027 1150.6383 89.2644

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Conditional Coverage with Mondrian Conformal Prediction

Finally, we assess the stronger guarantee of conditional coverage using Mondrian CP, with results
presented in Figure 6. This figure compares the station-specific coverage rates of standard CP
methods (Standard CP, represented by bars) and their Mondrian counterparts (Mondrian CP,
represented by points) across the five busiest target stations. The results reveal a critical limitation
of the marginal guarantee provided by standard CP. While these methods (bars) maintain the
nominal coverage on average across all stations, their conditional coverage can be unreliable. For
several station groups and desired coverage levels, the empirical coverage rate dips below the
target level (the dashed red line), meaning the intervals are not as trustworthy for those specific
stations. For example, at the 0.95 desired coverage level, the standard CP method for several
models provides coverage below 0.94 for the London Charing Cross station (CHRX).

In contrast, the Mondrian CP variants (points) consistently achieve the target coverage rate
within each station-specific stratum. By calculating separate calibration terms for each station,
MCP enforces the conditional coverage guarantee, ensuring that the prediction intervals are
equally reliable across these different operational contexts.
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Figure 6. Comparison of conditional coverage rates for standard (marginal) and Mondrian conformal prediction across

the five busiest target stations. Each subplot (a–f) corresponds to a desired coverage level (1− α). For each station

group, bars with error bars show the mean and standard deviation of standard CP over 10 runs; black-outlined points

show Mondrian CP results. The figure shows that while standard CP may fail to meet nominal coverage for subgroups,

MCP enforces conditional coverage, ensuring reliable performance across all stations.

6. Discussion
Our empirical results highlight a critical gap in uncertainty quantification for train delay
prediction: widely used methods such as quantile regression, MC Dropout, and Deep Ensembles
consistently fail to achieve their nominal coverage on real-world data. Despite theoretical
grounding, these approaches produce miscalibrated intervals that may appear reasonable but are
operationally unreliable, posing risks to scheduling, resource allocation, and passenger trust. This
fragility underscores the need for robust, assumption-free calibration in high-stakes domains.

Conformal prediction addresses this challenge effectively as a model-agnostic, post-hoc
framework that guarantees marginal coverage regardless of the underlying model. It corrects
miscalibration across all underlying predictors, from simple linear regression to complex deep
neural networks, establishing CP not merely as another UQ method, but as a foundational tool
for reliable uncertainty reporting. Notably, the efficiency of the resulting intervals depends on the
quality of the base model’s uncertainty structure. In our study, conformalized quantile regression
(CQR) excels in this regard, consistently producing the most useful intervals (lowest Winkler
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score). Since quantile regression is inherently designed to model the conditional distribution of
the data, it produces adaptive, heteroscedastic intervals that, even if miscalibrated, provide a far
better starting point for calibration than the static-width intervals derived from a point predictor
like XGBoost. This highlights that for building the best interval predictors, the goal should be to
select a base model that best captures the shape of the predictive uncertainty, rather than one that
simply minimizes point-wise error.

Beyond marginal guarantees, operational reliability requires conditional validity, particularly
across heterogeneous stations or routes. Standard CP can exhibit significant coverage variability
across subgroups, undermining trust in specific contexts. Mondrian conformal prediction resolves
this by enforcing coverage within predefined strata, ensuring consistent performance across the
network. This shift from average to conditional reliability is not theoretical nuance; it is essential
for fair and trustworthy deployment in practice.

For railway operators, our findings provide a clear pathway to risk-aware decision-making.
CQR emerges as a particularly strong candidate, balancing guaranteed coverage with interval
efficiency. Deploying such calibrated systems enables proactive actions, such as preemptively
adjusting crew schedules, holding connecting services, or providing passengers with reliable
delay windows–all backed by statistically rigorous guarantees.

While our findings are based on a large-scale dataset from a single operator, they motivate
several important directions for future research. First, extending this evaluation to other networks
and longer timeframes would further test the generality of our findings, and the feature space,
though comprehensive, could be enriched with external data sources like real-time weather
information or network-wide passenger flow data. More importantly, railway operations are
inherently multivariate and spatiotemporally interconnected. A natural extension of this work
is the transition from predicting delays at a single terminal node to forecasting the entire delay
trajectory of a train across a sequence of future stations. In such a multivariate setting, the target
variable becomes a vector y ∈Rk, representing delays at the next k stations. For practical railway
operations, prediction sets shaped as hyperrectangles are particularly helpful, as they facilitate
marginal interpretation [57]. Relevant approaches include independent modeling with Bonferroni
or similar correction [58,59], CQR-based multi-output regression with max-score aggregation
[43,60], and Copula-based CP [61]. Future research can explore multi-output CP techniques that
generate such interpretable sets while accounting for dependencies to maintain efficiency.

Furthermore, if real-time data streams are available, the problem can be framed as a sequential
learning task to model the inherent time-varying relationship between the operational state and
delay outcomes. Adaptive CP methods for time series [62–64] offer promising mechanisms to
handle distribution shifts by dynamically adjusting interval widths in real-time. Finally, since
train delays are not isolated events but propagate through the physical network topology,
integrating Graph Neural Networks (GNNs) to model the spatiotemporal state of the entire
railway network would be a logical step to capture these complex interactions.

7. Conclusion
This paper presents a comprehensive evaluation of conformal prediction (CP) as a robust
framework for uncertainty quantification in train delay prediction, a high-stakes domain where
inaccurate risk assessment can have significant operational consequences. We show that widely
used interval methods often fail to achieve nominal coverage, while standard CP and, particularly,
conformalized quantile regression (CQR) effectively calibrate predictions to provide rigorous,
distribution-free marginal coverage guarantees. CQR emerges as the most efficient approach
in our study, preserving the adaptive interval widths of quantile regression while ensuring
validity. Furthermore, we demonstrate that Mondrian conformal prediction (MCP) is essential for
practical deployment, delivering conditional coverage across heterogeneous subgroups such as
railway stations. Together, these results establish CP as a powerful, practical tool for transforming
machine learning models into reliable, decision-ready systems, with broad implications for
transportation and other safety-critical domains.
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