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Abstract. Train delays cause significant economic and operational 
impacts. Accurate prediction of these delays is therefore essential for 
improving railway service reliability and supporting effective decision-
making. Thus, this chapter introduces a novel approach combining tree-
based machine learning (ML) models with Conformal Prediction (CP) 
to estimate train delays by predicting train travel times between consec-
utive stations. Using real-world data from over 12.8 million production 
service records collected over a period of 3 years and 8 months, the pro-
posed approach achieved a prediction accuracy of 20 s, 90% of the time.
Furthermore, CP delivers statistically valid prediction intervals with an
average width of 19.3 s at a 90% confidence level, successfully meeting
the target coverage as demonstrated by empirical results.

Keywords: Train delay prediction · Timetabling o ptimisation ·
Conformal Prediction

1 Introduction 

The railway system is a key component of modern transportation infrastructure 
that plays a pivotal role in connecting people and goods over long distances [1,44, 
58,59]. One of the most critical aspects of the railway operations is punctuality, 
as it represents the reliability and integrity of the entire system [48,58–60,68]. 
Punctuality, in the context of railway systems, refers to the ability of trains 
to operate according to the timetable with minimal deviation [36]. However, 
high variability in real-world railway operations and unexpected disruptions such 
as weather conditions, train malfunctions and infrastructure issues like signal
failures often result in train delays [75]. Train delays may result in economic 
losses, passenger inconvenience and unsatisfactory, and a cascade of congestion
across the entire railway network [71]. 

Given the far-reaching impacts of train delays, predicting and mitigating 
them is of paramount importance. Over the past decades, there has been a con-
certed effort to employ v arious Machine Learning (ML) models and methods to
train delay predictions. In [57], XGBoost combined with B ayesian Optimisation
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were utilised to predict train arrival delays based on spatio-temporal, opera-
tional, and infrastructure data. A long s hort-term memory (LSTM) model was
proposed in [69], leveraging train operational features to predict train a rrival
delays. In [61], the researchers used artificial neural networks, random forest 
regression, gradient boosting regression with features from planned and actual 
train ope ration data to predict arrival and departure times at each main station.

However, train journeys do not happen in isolation. Thus, modelling the 
train delay prediction problem requires capturing the sequential relationships 
between stations along the route, which complicates dataset construction and 
model training. In addition, current train delay prediction models lack the ability 
to provide meaningful confidence measures for their predictions, making it diffi-
cult for railway operators to assess the reliability of the forecasts and potentially
leading to suboptimal operational decisions.

To this end, this chapter proposes a novel train delay prediction model that 
leverages Machine Learning (ML) methods and Conformal Prediction (CP) to 
estimate train travel times between stations, thereby generating reliable delay 
forecasts at the following stations. In this way, the proposed approach pre-
serves the dependencies between train arrival and departure events, as well 
as the sequential relationship between stations, while ensuring efficient dataset 
construction and model training. Furthermore, conformal prediction provides
prediction intervals with user-specified confidence level for each delay esti-
mate, enabling uncertainty quantification and more transparent and trustworthy
decision-making. The contributions of this study are summarised as follows:

– We propose a novel machine learning-based approach for train delay pre-
diction that leverages operational data to estimate the travel time between 
consecutive stations. This model preserves the dependencies between train 
events and the sequential relationships between stations, while also ensuring
efficient dataset construction and model training.

– We leverage conformal prediction to generate rigorous, statistically valid pre-
diction intervals for each train delay forecast, thereby enhancing the confi-
dence, reliability, transparency , and trustworthiness of the decision-making
process in railway systems.

– We validate the performance of the proposed machine learning model using 
real-world, large-scale train operational data, comprising 12,840,590 train ser-
vice records collected over a period of 3 years and 8 months. Furthermore, we 
compare the performance of the most widely used machine learning models in
the literature, offering an in-depth analysis of their reliability for train delay
prediction.

The remainder of this paper is structured as follows: Sect. 2 overviews the 
most popular train delay prediction approaches. Section 3 provides a detailed 
description of the problem formulation and the system architecture. Section 4 
offers in-depth introduction to the machine learning model used for train delay 
prediction and the conformal prediction framework. T he empirical experiments
and performances analysis are presented in Sect. 5. Finally, Sect. 6 concludes our 
work and outlines future work.
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Fig. 1. Number of published papers on train delay p rediction by year.

2 Literature Review 

Over the past two decades, there has been a continuously growing trend in 
the number of train delay p rediction contributions in the academic world, as
discussed in Sect. 1 and illustrated in Fig. 1. The most popular train delay 
prediction approaches in the literature can be categorised into two groups, 
namely the event-driven models and data-driven models [58]. Event-driven 
approaches explicitly model the dependencies between the different train events 
(e.g., arrivals, departures, dwells, passing-by, etc.) and create a chain or net-
work of events, capturing how delays propagate through the railway system. In 
contrast, data-driven approaches use historical data and machine learning or sta-
tistical methods to directly predict the delay at a given future point or station, 
based on available features (e.g., current delay, infrastructure status, weather 
information, etc.) in a single step. Event-driven approaches are generally more
interpretable, as the operator can trace how delays propagate through the rail-
way system, while data-driven methods typically rely more on large datasets and
can capture complex hidden relationships in the data.

Consequently, typical event-driven train delay prediction approaches employ 
models such as Graph Models, Markov Chain (MC) models, Bayesian Networks 
(BN), and Equation Systems (EQS), among others, to highlight the dependencies 
between various train events during prediction. To explore the underlying pat-
terns in the large-scale datasets, machine learning models like Neural Networks 
(NN), Random Forests (RF), Decision Trees (DT), Support Vector Machines
(SVM), Linear Regression (LNR) were employed for data-driven methods. The
proportions of different prediction models among the included references in the
literature are shown in Fig. 2. To provide a comprehensive comparison of the
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approaches in the literature, we categorise and analyse them using Mean Abso-
lute Error (MAE) and Root Mean Squared Error (RMSE), as shown in Table 1. 

Fig. 2. Proportions of different prediction mo dels in the literature.

Event-driven approaches heavily rely on the logic chains of the train events 
along the route, thus building a nd calibrating the dependency structure is time-
consuming and challenging [13,42,58]. Upon using the highly specified data 
structure, event-driven methods may not fully utilise the richness of histor-
ical data beyond parameter fitting and may produce a less flexible predic-
tion model that struggles with capturing complex, hidden relationships in the 
datasets. Data-driven methods can generate the train delay prediction directly
with promising accuracies. However, the black-box training makes the final esti-
mation less interpretable for real-world operators.

To address this issue, this chapter proposes a novel machine learning-based 
approach incorporating the m ost widely used tree-based models and conformal
prediction [38,40,41]. The proposed approach leverages historical train opera-
tional data to predict the travel time between the current station and the next, 
rather than focusing solely on train delays. By estimating the train travel time 
between consecutive stations, the approach captures the dependencies between 
train departure and arrival events, which can then be used to more accurately 
estimate train delays at following stations along the route. At the same time,
conformal prediction provides prediction intervals for estimated train travel time
that helps train operators take proactive measures to stay on schedule with con-
fidence. Leveraging the underlying patterns in large-scale, real-world datasets
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while providing well-calibrated confidence measures for each prediction, the pro-
posed machine learning-based approach d elivers accurate and reliable train delay
predictions.

3 Problem Statement and System Architecture 

This section begins by presenting the formulation of the train delay predic-
tion problem that the proposed method aims to solve. Subsequently, a general 
overview of the proposed method’s system architecture is provided.

3.1 Problem Formulation 

To understand the train delay prediction problem in a systematic w ay, assume
a targeted train service . i is scheduled to arrive at station . j at time . ts.  Then  at  
a current time .t ≤ ts, the predicted train delay . Φ̂ is defined a s:

.Φ̂i,j,t,ts = f(Ωi,j) (1) 

where .Ωi,j is historical train operational data of train service . i at station . j, 
namely the input to the model, and . f maps the input information .Ωi,j to the 
predicted train delay .Φ̂i,j,t,ts . This formulation naturally lends itself to a regres-
sion task.

In the proposed method, the predicted train delay . Φ̂ is calculated from the 
scheduled train arrival time . ts and the difference in the train travel time . ΔTi,j−1,j

from the previous station .j−1 to the current station . j. The estimated train tra vel
time difference .ΔT̂i,j−1,j is generated by the machine learning model .M based 
on train operational data .Ωi,j , defined a s

.ΔT̂i,j−1,j = M(Ωi,j) − Tj−1,j (2) 

where .Ti,j−1,j is the scheduled train travel time between these consecutive sta-
tions .j − 1 and . j of the train service . i. 

Therefore, the predicted train delay . Φ̂ in the proposed method is defined as:

.Φ̂i,j,t,ts = M(Ωi,j) − Ti,j−1,j . (3) 

3.2 System Architecture 

To deliver accurate train delay estimates along with prediction intervals that 
provide meaningful confidence measures of each prediction .Φ̂i,j,t,ts , the proposed 
system is structured into three main steps: data preparation, model training, and
test sample prediction, as shown in Fig. 3. The brief description of each step is
as follows:
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Fig. 3. The overview of the proposed train dela y prediction approach.

Data Preparation: We begin by preprocessing the raw historical train oper-
ational records. Specifically, we first identify and remove any complete train 
services that contain missing values or outliers in their arrival time, departure
time, dwell time, or train travel time at any station.

To facilitate numerical processing, ISO timestamps in the aforementioned 
operational data are converted to Unix timestamps. Next, categorical attributes, 
those identifying train services, engine mo dels, and specific stations, are label-
encoded to transform them into numeric form.

Finally, the dataset is divided into training, calibration, and test sets for 
model training, prediction in terval generation, and final evaluation, respectively.

Model Training: In the model training step, a machine learning-based model 
for train delay prediction is developed, and conformal prediction is employed to
generate statistically valid prediction intervals. In the proposed approach, the
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output is the estimated travel time to the next station, which is subsequently 
used to generate the final train delay predictions (see Eq. 3). 

First, tree-based models, identified in Sect. 2 as the most widely adopted 
algorithms in the literature, are trained on the training dataset. Next, the trained 
model is used to predict outcomes for the calibration set. The residuals from these 
predictions, calculated as the differences between the predicted and actual values 
in the calibration set, are then used within the conformal prediction framework
to construct prediction intervals with user specified confidence level. Finally, the
trained machine learning model is applied to the test set to generate train delay
estimations.

Test Sample Prediction: In the final step, the accuracy of the machine learn-
ing train delay prediction model and t he quality of the prediction intervals are
evaluated.

Performance metrics such as Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE) are used to assess the predictive accuracy of the machine 
learning model. Subsequently, the model’s performance is compared with other 
po pular machine learning approaches for train delay prediction. Finally the qual-
ity of the prediction intervals is analysed.

4 Machine Learning Models and Conformal Prediction 

This section offers a comprehensive description to the most widely used machine 
learning models in the literature for train delay prediction tasks and an in-depth 
introduction to conformal prediction that produces statistical valid prediction
intervals with a predefined confidence level.

4.1 Machine Learning Models in Train Delay Prediction 

To provide accurate and reliable train delay predictions, a large-scale real-world 
train operational dataset spanning 3 years and 8months (see Sect. 5.1 for details) 
is leveraged in this study. To effectively uncover underlying patterns in this 
dataset, the data-driv en approach is adopted in the proposed system.

As discussed in Sect. 2 and illustrated in Fig. 2, the most commonly used 
machine learning algorithms for data-driven approaches in the literature are 
Neural Networks (NN), Random Forests (RF), and Support Vector Regres-
sion (the regression extension of SVM). Given the dataset’s size of 12,840,590 
records, training NNs is extremely time-consuming a nd computationally expen-
sive. Therefore, the more efficient RF model is selected as the primary machine
learning algorithm in the proposed approach.

Random Forest (RF). Random Forest is a robust ensemble learning method 
that consists of multiple decision trees and combines their outputs to improve
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prediction accuracy and control overfitting in train delay prediction [6]. A stan-
dard RF constructs numerous decision trees during training, each trained on a 
random subset of the data and a random subset of features at each split, and
outputs the average of individual tree predictions.

A standard decision tree works by repeatedly splitting the feature space into 
smaller regions. Each internal node applies a rule based on one of the input fea-
tures, and each leaf node gives a final prediction [7,34,45,51]. Thus, the ensemble 
of trees is defined as:

.{Treed(Ωi,j)}D
d=1 (4) 

where .Treed denotes the individual decision tree, .D is the total number of trees 
in the ensemble, and .Ωi,j is a bootstrap sample of the input train operational
data .Ωi,j . A bootstrap sample is a sub-dataset created by randomly sampling 
with replacement from the original data, helping t he model mitigate overfitting
during training. For a tree node .ntree with .Nntree

samples, the training objective 
is to minimise the MSE, defined as:

.MSE(ntree) =
1

Nntree k∈ntree

Ti,j−1,j − T̄n
2 (5) 

where .Ti,j−1,j is the ground truth train travel time of the .i-th train service a t
station . j in the node, and .T̄n is the average of target train travel time values in 
the node. Subsequently, the final prediction .T̂i,j−1,j of the train travel time from 
the previous station .j − 1 to the current station . j is calculated a s:

.T̂i,j−1,j =
1
D

D

d=1

Treed(Ωi,j). (6) 

In the proposed train delay prediction approach, the i nput train operational
data .Ωi,j to the RF model contains service identifiers that uniquely distinguish 
the train service, as well as operational details that describe the train’s arrival 
and departure at each station stop. After the estimation of the train travel time,
the final train delay prediction .Φ̂i,j at station . j is deriv ed.

To provide a comprehensive comparison of the performance of popular 
machine learning models for train delay prediction, we also implement distin-
guishing machine l earning models such as Support Vector Regression (SVR) and
Linear Regression (LNR).

Support Vector Regression (SVR). SVR, a regression extension of SVM, is 
a robust supervised learning models widely used in t he literature to enhance the
accuracy of train delay prediction [10,39,58,62]. A standard SVR aims to find 
an optimal hyperplane that best fits the data within a predefined margin. The 
hyperplane is determined by support vectors, which are the training samples
nearest to the decision boundary and play a crucial role in its definition.

For the regression model is defined by the function:
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.f(Ωi,j) = w, Ωi,j + b. (7) 

The primal optimisation objective for SVR model for train dela y prediction
is given by:

. min
w,b,ξk,ξ∗

k

1
2

w 2 + C

Ntrain

i=1

Nstation

j=1

(ξi,j + ξ∗
i,j) (8) 

subject to: 

.T̂i,j−1,j w, Ωi,j b ≤ + ξi,j , (9) 

w,  Ωi,j + b − T̂i,j−1,j ≤ + ξ∗
i,j , (10) 

ξi,j ≥ 0, ξ∗ 
i,j ≥ 0 (11) 

where .w is the weight vector defining the orientation of the regression hyper-
plane, . b is the bias term shifting the hyperplane from the origin, .ξi,j and . ξ∗

i,j

are slack variables measuring prediction errors above and b elow the margin tol-
erance . respectively, . C is the regularisation parameter controlling the trade-off 
between model simplicity and error tolerance, . w 2 is the squared L2-norm reg-
ularisation term promoting model flatness, .Ntrain is the total number of train
services, and .Nstation is the total number train stations in t he railway network.

Linear Regression (LNR). Linear Regression is a popular supervised learn-
ing algorithm for modelling the relationship between a the historical train oper-
ational data and the train delays [43,54,59]. The goal is to find a linear function 
that best predicts train delay times based on input features.

In the proposed approach, to predict the train travel time to the next station,
the model assumes:

.Ti,j−1,j = wT Ωi,j + b + (12) 

where .w is the weight vector, . b is the bias term, and . is the residual error. The 
LNR model is optimised b y minimising the loss, defined as:

. min
w,b

L(w, b) = min
w,b

1
Ntrain × Nstation

Ntrain

i=1

Nstation

j=1

Ti,j−1,j − (wT Ωi,j + b)
2

(13) 
where .Ntrain is the total number of train services, and .Nstation is the total 
number train stations in t he railway network.

Additionally, a range of tree-based models, including Decision Trees (DT), 
Gradient Boosting (GB), Histogram-based Gradient Boosting (histGB), and 
eXtreme Gradient Boosting (XGB), as well as regularised LNR-based models
such as Ridge Regression (Ridge) and Lasso Regression (Lasso), are included in
the empirical experiments.
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4.2 Conformal Prediction 

While machine learning models provide promising predictions of train delays, 
they do not guarantee the uncertainty associated with individual predictions. In 
high-stakes systems like railway networks, the ability to provide not only accu-
rate but also interpretable and uncertainty-guaranteed predictions is crucial. 
Thus, conformal prediction is leveraged to quantify prediction confidence, allow-
ing train operators to assess how often true train delays fall within a specified
bounds, thus enabling more informed and reliable decision-making.

Conformal Prediction (CP) is a statistically rigorous framework for uncer-
tainty quantification that produces prediction intervals with guaranteed cov-
erage, thereby improving the reliability of machine learning model predictions
[47,55,63,64]. 

Recall that a machine-learning model .M is trained on train operational data
.Ωi,j for train travel time prediction of train service . i at station . j, defined a s:

.T̂i,j−1,j = M(Ωi,j). (14) 

Given a user-specified confidence level . α, CP constructs prediction intervals 
that are guaranteed to contain the true target value with probability at least
.1−α, under the assumption of exchangeable data. In our experiments, we use a 
computationally efficient variant of CP, namely Inductive Conformal Prediction 
(ICP). To quantify uncertainty non-parametrically, ICP first uses a calibration 
dataset to compute nonconformity scores, which measures of ho w unusual or
nonconforming a new observation is relative to the known data distribution.
The nonconformity score is calculated by the calibration residuals defined as:

.Rcal
k = |Tk − M(Ωk)| , k = 1, . . . ,m (15) 

where .Rcal
k is the residuals of the calibration set, .m represents the number of 

samples in the calibration dataset, .Tk and .Ωk is the ground truth label (i.e., 
train travel time) and input features of the .k-th sample in the calibration set, 
respectively, .M is the applied machine learning model. Subsequently , the critical
quantile . q̂ which determines how wide the prediction interval should be to m eet
the specified confidence level . α is calculated a s:

.q̂ = quantile Rcal
k

m

k=1
∪ {∞}, (m + 1)(1 − α)

m
. (16) 

Once the critical quantile . q̂ is computed, a prediction interval for a new train
operational data input .Ωtest is defined a s:

. [M(Ωtest) − q̂,M(Ωtest) + q̂]. (17) 

Under the assumption that the training and test data are exchangeable, this 
prediction interval comes with a rigorous coverage guarantee [47,55]. Specifi-
cally, the interval will contain the true outcome with probability at least .1 − α, 
formalised as:
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.P (Ttest ∈ [M(Ωtest) − q̂,M(Ωtest) + q̂]) ≥ 1 − α. (18) 

This implies that, across many predictions, the fraction of the prediction 
intervals that capture the true train travel time values will be at least .1 − α, 
therefore providing a statistically sound and transparent measure of prediction
uncertainty.

5 Empirical Experiments 

This section begins with a detailed introduction to the train operational dataset 
used in this study, followed by a brief overview of the evaluation metrics employed 
to assess the performance of the proposed train delay prediction approach. 
Finally , it presents the empirical results and a performance comparison with
other popular machine learning models in the literature.

5.1 Dataset Description 

To evaluate the accuracy of the proposed train delay prediction method and 
the quality of the prediction intervals, a large-scale real-world train operational 
dataset is utilised. This dataset encompasses approximately 3 years and 8 months 
of data, spanning from February 12, 2020, to October 8, 2023. It includes records 
for 12,621 unique train services operating between specific stations along a des-
ignated railway line in the southeast of the United Kingdom. Each of these
services may have run multiple times during the recorded period. An example
of a raw train service record is shown in Table 2. A brief description of the train 
op erational record attributes is as follows:

Headcode Used nationally to determine a train service between specific stations
and on a prespecified line.

UnitNumber Identifies which engine is working on this train service; this is the
engine that “drives” the train.

TrainModel Represents the service family inside the railway system of the oper-
ator company.

Stops Consists of the train operational records at each s tation where it stops,
including:
Name The name of t he station.
CRS The Computer Reservation System code, used to identify railway stations 

for ticketing and passenger information systems.
Tiploc The Timing Point Location code, used to identify specific timing 

points on the railway network, including stations, junctions, sidings, and
other timing points (e.g., for arrival, departure, dwell).

BookedDeparture, ActualDeparture, DepartureDiff Information about 
departure a t this station.

BookedArrival, ActualArrival, ArrivalDiff Information about train 
arrival at this station.
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DwellBooked, DwellActual, DwellDiff Information about train dwell time
at this station.

UntilNextLocationBookedTime Booked train travel time until the next stop.
UntilNextLocationActualTime Actual train travel time until the next stop.
UntilNextLocationTimeDiff Difference in train travel time un til the next

stop.
Delayed The delayed time identified f or this stop.

Note that the time ‘0001-01-01T00:00:00.000Z’ in the booked and actual 
arrival times indicates that this is the first station/stop in this train service, 
while the same time appears in the booked and actual arrival times represents
the very last stop in the route.

To construct a training dataset suitable for machine learning models, each 
train service record is segmented into multiple data samples. Each sample 
includes key identifiers (e.g., ‘Headcode’, ‘UnitNumber’) to uniquely distin-
guish the train service, as well as operational details (e.g., ‘Tiploc’, ‘Booked-
Departure’, ‘ActualDeparture’, ‘BookedArrival’, ‘ActualArrival’, ‘DepartureD-
iff’, ‘ArrivalDiff’, ‘DwellBooked’, ‘DwellActual’, ‘DwellDiff’, ‘UntilNextLoca-
tionBo okedTime’, ‘UntilNextLocationActualTime’, ‘UntilNextLocationTimeD-
iff’) that describe the train’s movements at each station stop. After preprocess-
ing, the final dataset consists of 12,840,590 individual train service records.

5.2 Evaluation Metrics 

To assess the prediction performance of the train delay prediction approach, 
popular evaluation metrics including Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE) are utilised. To assess the quality of prediction
intervals, Residual Coverage Score (RCS) is leveraged.
Mean Absolute Error (MAE) 
The Mean Absolute Error (MAE) is a straightforward metric for evaluating the 
accuracy of a train delay prediction model. It calculates the mean of the absolute
differences between predicted and actual train delays, as shown by:

.MAE =
1
n

n

k=1

|yk − ŷk|. (19) 

Here, . n is the number of observations, .yk represents the actual delay, and . ŷk

denotes the predicted delay for each observation. A lower MAE suggests better 
model accuracy, o ffering a direct measure of the average prediction error.
Root Mean Squared Error (RMSE) 
The Root Mean Squared Error (RMSE) is a widely used metric for evaluating 
the accuracy of train delay predictions. It is derived from the Mean Squared 
Error (MSE), which measures the average of the squared differences between
the actual and predicted values:

.MSE =
1
n

n

k=1

(yk − ŷk)2. (20)
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Table 2. A snapshot of the raw t rain operational records.

Attribute Value 
Headcode 1V84BA 
UnitNumber 376016 
TrainModel 465 
Stops 

Name Charing C ross
Crs CHX 
Tiploc CHRX 
BookedDeparture 2020-03-17T23:37:00.000Z 
BookedArrival 0001-01-01T00:00:00.000Z 
ActualDeparture 2020-03-17T23:37:04.000Z 
ActualArrival 0001-01-01T00:00:00.000Z 
DwellBooked 0 
DwellActual 0.0 
DepartureDiff 4.0 s 
ArrivalDiff 0.0 s 
DwellDiff 0.0 s 
UntilNextLocationActualTime 143.0 s 
UntilNextLocationBookedTime 120.0 s 
UntilNextLocationTimeDiff 23.0 s 
Delayed 0 

Stops 
Name London B ridge
.  .  . .  .  .  

By taking the square root of MSE, RMSE expresses this error i n the same
units as the original data:

.RMSE =
1
n

n

k=1

(yk − ŷk)2. (21) 

RMSE penalises larger errors more heavily due to the squaring step, making 
it particularly sensitive to significant deviations between predicted and actual 
delays. Its interpretability—being in the same scale as the target variable— 
makes it especially valuable for assessing the magnitude of prediction errors 
in a practical and intuitive manner. A lower RMSE indicates better predictive
performance and is therefore a central metric in evaluating the effectiveness of
delay prediction models.
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Residual Coverage Score (RCS) 
To quantify how frequently the true train delay values fall within the predicted 
intervals, Residual Co verage Score (RCS) is introduced, defined as:

.RCS =
1
n

n

k=1

I ŷlow
k ≤ yk ≤ ŷup

k (22) 

where .yk is the true value for the .k-th sample, .ŷlow
k and .ŷup

k are the lower and 
upper bounds of the prediction interval, respectively. For e ach of the test samples,
the indicator function . I returns 1 if the interval contains the true value and 0 
otherwise. The RCS is then the average of these outcomes across the entire 
dataset. In repeated sampling, the proportion of times that the interval contains
the true train delay values should match the predefined confidence level .1 − α. 
Thus, RCS assesses whether the prediction interva ls are statistically valid.

5.3 Empirical Results 

To evaluate the performance of the proposed train delay prediction approach, 
Random Forest (RF) and several widely used machine learning models are imple-
mented on the aforementioned train operational dataset. These include Support 
Vector Regression (SVR), Linear Regression (LNR), Decision Trees (DT), Gradi-
ent Boosting (GB), Histogram-based Gradient Boosting (HistGB), and eXtreme
Gradient Boosting (XGB), along with regularised linear models such as Ridge
Regression (Ridge) and Lasso Regression (Lasso).

Fig. 4. The CDF curves of the absolute errors generated by each machine learning 
model. The RF model produces the most accurate and robust prediction, achieving 
an accuracy of 20 s, 95% of the time. However, SVR and LNR-based models fail to
effectively map the correlation between the train operational data to the train travel
time between stations.
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Fig. 5. The performance comparison of the popular machine learning models. The 
results show that tree-based models outperform SVR and LNR models in predicting
train delays on large-scale operational data.

In order to predict the train travel time to the next station (i.e., ‘UntilNext-
LocationActualTime’), ‘Headcode’, ‘UnitNumber’, ‘Tiploc’, ‘BookedDeparture’, 
‘ActualDeparture’, ‘BookedArrival’, ‘ActualArrival’, ‘DepartureDiff’, ‘ArrivalD-
iff’, ‘DwellBooked’, ‘DwellActual’, ‘DwellDiff’, and ‘UntilNextLocationBooked-
Time’ are leveraged as the input features to the machine learning m odel. A
desktop PC equipped with an Intel i9-12900k @ 4.90GHz CPU and 32GB DDR4
4000MHz memory was used to analyse the results.

The cumulative distribution function (CDF) curves, along with the RMSE 
and MAE of the employed models, are presented in Table 3 and Figs. 4 and 5.  It  is  
observed that the RF model produces the most accurate and robust predictions, 
achieving an accuracy of 20 s, 95% of the time. SVR, another popular machine 
learning model in train delay prediction, however, struggles at a mean error 
of 185.83 s. Given the extremely time-consuming training process on real-world 
train operational data, SVR models are not considered as a suitable method for 
train delay prediction on large-scale datasets. Additionally, LNR-based models 
fail to effectively map the correlation between the train operational data to the 
train travel time between stations. This is because, in real-world railway systems, 
operational features often lack a clear linear relationship with the train travel
time between stations. In contrast, most tree-based models offer accurate and
robust estimations of train delays, although their performance can vary across
models. Tree-based models excel in train delay prediction because they effectively
capture complex, non-linear relationships between diverse factors such as train
services identifier, train operational records and station information.

However, while machine learning models predict train delays effectively, they 
lack guarantees on individual uncertainty. Therefore, conformal prediction is 
leveraged to quantify uncertainty, helping train operators assess how often true
delays fall within predicted bounds for more reliable decision-makings. By apply-
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Table 3. Train delay prediction model p erformance comparison.

Model RMSE (s) MAE ( s)
RF 261.59 14.71 
GB 261.38 22.99 
DT 265.69 27.14 
XGB 289.50 17.09 
histGB 389.96 29.78 
SVR 1869.18 185.83 
LNR 1839.20 284.96 
Lasso 1840.17 271.07 
Ridge 1841.20 268.53 

Fig. 6. The prediction interval widths (blue boxplot) at different confidence levels 
were evaluated within the conformal prediction framework. The orange line indicates 
the prediction generated by the ML model. At a 90% confidence level, the resulting 
interval width was 19.3 s, while the interval width i ncreases to 35.5 s at the confidence
level of 95%. This demonstrates the expected trade-off in conformal prediction, where
higher confidence levels yield wider prediction intervals.(Color figure online)

ing conformal prediction with confidence levels of 90% and 95%, the resulting 
prediction intervals are 19.3 s and 35.5 s, respectively, as illustrated in Fig. 6. 
This demonstrates the expected trade-off in conformal prediction, where higher 
confidence levels yield wider prediction interv als. This means that for any train
delay prediction .Φ̂test made by the proposed approach, the probability that the 
true delay time falls within [.Φ̂test - 9.65  s  , .Φ̂test +  9.65  s]  and [.Φ̂test - 17.75 s, 
.Φ̂test + 17.75 s] is 90% and 95%, respectively.

To investigate the validity of the prediction intervals, the Residual Coverage 
Score is also analysed, as shown in Fig. 7. It illustrates the actual empirical 
coverage scores within each bin, compared to the target coverage rates of 90% 
(red dashed line) and 95% (yellow dashed line). It is observed that the conformal
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prediction intervals achieve the expected coverage for lower predicted values 
below 263.4 s. However, they exhibit under-coverage in the highest prediction 
bin, where the predicted values exceed 425.4 s. This suggests that for larger and
longer train delays, the model is unable to provide estimations with enough
confidence.

Fig. 7. The coverage scores of conformal prediction intervals across different predicted 
value bins. It is observed that the prediction interval achieve the desired coverage for 
lower predicted train delay v alues below 263.4 s, but under-cover for the predicted
values above 425.4 s.

6 Conclusion 

This study presents a robust machine learning approach for train delay prediction 
with quantified uncertainty. By modelling train travel times between consecu-
tive stations using tree-based machine learning models, the proposed approach 
effectively captures sequential dependencies while ensuring efficient processing 
of large-scale datasets and facilitating the learning of underlying patterns within 
the dataset. The integration of Conformal Prediction provides statistically rig-
orous uncertainty quantification, delivering prediction intervals (e.g., 19.3 s at 
the 90% confidence level) that enhance decision-making transparency for rail-
way operators. Validated on over 12.8 million real-world train production service 
records, the proposed method demonstrates an accuracy below 20 s, 90% of the
time, outperforming widely used train delay prediction models such as LNR
and SVR alternatives. While the framework achieves target coverage for typi-
cal delays below 263 s, extreme delays longer than 425 s exhibit under-coverage.
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Further research could investigate methods for dynamically adjusting prediction 
intervals for individual test samples, particularly in relation to varying levels of 
delay severity. 
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